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ABSTRACT 

With widespread use of wireless networks and the emergence of 

multiple Radio Access Technologies (RATs), the present-day network 

architecture is currently being transformed into the one global 

infrastructure vision, called Beyond 3rd Generation (B3G) [1]. B3G is 

a heterogeneous Internet Protocol (IP) based wireless access 

infrastructure, which aims to provide higher capacity and quality of 

service (QoS) to the users even considering the limited radio spectrum 

through support of a cooperative diversity [2] and reconfigurability [3].  

In a system with a cooperative diversity each node in the network 

can act both as an information source and a relay. Such information 

relay may increase the capacity and diversity gain in wireless networks, 

leading to the improved performance in terms of both area coverage 

and QoS [4]. In B3G the cooperative communication assumes that the 

network infrastructure will rely on more than one RAT: depending on 

encountered specific conditions (e.g., hot-spot requirements, traffic 

demands, etc.) at different times in different areas the RATs will 

cooperate with each other to achieve the maximization of QoS levels 

offered to users. To support the cooperative communications in B3G, 

the advanced management functionality is required to deal with the 

reallocation of traffic to different RATs and sub-networks, as well as 

the mapping of applications to QoS levels [5-8].  

The move towards the reconfigurability concept was initiated by the 

development of the Cognitive Radio Network (CRN) – the network, 

where the nodes with fixed licensed spectrum (so-called primary nodes) 

can share their spectrum resources with nodes without fixed licensed 

spectrum (secondary nodes) [9]. In B3G the reconfigurability aims to 

provide essential mechanisms for terminals and sub-networks, to enable 

them to adapt dynamically and transparently to the most appropriate 

RAT depending on encountered situation (hot-spot requirements, traffic 

demands, etc.). The reconfigurability allows for the dynamic allocation 

of resources (such as bandwidth, service rate, etc.) to RATs, and 

invokes a variety of new possibilities with respect to the more efficient 

utilization of available spectrum [1, 9-10]. 

With regard to the diverse challenges arising upon the development 

and deployment of B3G, this thesis aims to:  
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1. explore the potential ways of implementing the future wireless

infrastucture based on existing wireless networking standards and co-

existance of air such features ;

2. study the main principles of cooperative and cognitive

communication which lie in:

(a) cooperation and information exchange between all member

subnetworks; 

(b) support of reconfiguration capabilities of all nodes/user terminals 

within the network; 

(c) coexistence of the nodes/user terminals belonging to different 

RATs comprising the network ;  

(d) intelligent resource planning involving cognitive reactive and 

proactive management of the network resources based on external 

(environmental) aspects, as well as on goals, capabilities, 

experience and knowledge. 

3. develop the efficient radio resource management platform in order to

provide increased spectrum utilization and enhanced end-to-end QoS

for users of different RATs with and without fixed spectrum

allocation.

4. investigate the problems of co-existance, intra- and cross-layer

control between different RATs comprising the network, including:

(e) PHY layer channel modeling, including noise and interference

models, log-distance path loss, shadow and multipath induced 

fading, physical layer transmission techniques (MCS, AMC); 

(f) MAC/RLC layer design, including traffic generation models, 

packet scheduling, ARQ/HARQ, DCF/HCF, buffer status 

reporting, etc.; 

(g) Cross-layer control: necessary parameters (such as packet arrival 

rate, buffer occupancy, SINR) are observed on MAC and PHY; 

control of available resources (such as bandwidth, data rate, buffer 

capacity) on PHY layer;   

(h) Application layer QoS for users as a result of undertaken control 

on PHY/MAC layer. 

http://en.wikipedia.org/wiki/Log-distance_path_loss_model
http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
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OVERVIEW 

1 Introduction 

With widespread use of wireless services the wireless networking 

design paradigm is currently being transformed into the one global 

infrastructure vision, called Beyond 3rd Generation (B3G) [1, 101]. In 

future, the wireless services will be provided using a multiple number 

of radio access technologies (RATs) rather than using a single standard 

wireless network [102, 103]. The emergence of software defined radio 

(SDR) [104] will allow the customers to connect to any network based 

on the capacity and quality of service (QoS) requirements [102]. In 

B3G, various access points (APs) and base stations (BSs) belonging to 

different RATs will connect to the spectrum manager (SM) using an 

internet protocol (IP) network. Wireless users with their SDR terminals 

will connect to any of the APs/BSs within their coverage area (Figure 

1) [102].

Core Network

IP lin
k SM

Server

Bluetooth

Zigbee

Wi-Fi

LTE

WiMAX SDR

Fig. 1. Future heterogeneous cognitive wireless network architecture 

Recall, that the traditional concept of cognitive user behavior has 

been formulated as follows. Each unlicensed (secondary) node senses 

the spectrum to find (on its own) the available unused bandwidth 
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(spectrum hole) from some primary node, and utilizes it according to 

the requirements of this primary node. At any time the connection of 

the secondary node can be blocked by the primary node (which usually 

happens in case if the bandwidth used by the primary node at the 

current state is not enough to satisfy the requirements of the primary 

node exceed the contemporary level) [33-34, 40-50]. Such concept has 

many disadvantages mainly because of the absence of cooperation and 

information exchange between all member nodes. As a result, 

secondary nodes will spend more time on unnecessary channel sensing 

and competing for access to the licensed spectrum bands, which 

eventually will lead to connection loss, poor service quality and 

increased power consumption of the user terminals.  

In contrast to this concept, in B3G the wireless services will be 

provided using a cooperative approach [2] in which all member nodes 

will cooperate with each other by exchanging their network status 

information and sharing available capacity in an orderly manner. 

Information exchange and coordination between the nodes will allow 

maximizing the overall capacity and QoS of the network. In this way 

secondary nodes will be able to (temporarily) borrow network 

resources in a more efficient way, and minimize the loss of connection. 

However, to support the cooperation, the advanced management 

functionality is required to deal with the reallocation of traffic to 

different RATs and sub-networks, as well as the mapping of 

applications to QoS levels [5-8].  

In this research project we explore the potential ways of 

implementing the main principles of cooperative and cognitive 

communication in existing wireless networking standards, 3GPP LTE 

[69] and IEEE 802.11 (Wi-Fi) [70]. These principles lie in the effective 

management of the available resources, i.e. (i) more efficient utilization 

of available spectrum, (ii) improved end-to-end QoS for users of 

different RATs with and without fixed spectrum allocation, and (iii) an 

intelligent network planning process. 

Thesis makes of the following major research contributions: 

1. Three most common scenarios of cognitive network behavior in the

network architecture illustrated on Figure 1 have been investigated:

(i) In the first scenario all users, sub-networks and RATs have equal

priorities in accessing the network resources. The network 

resources, represented by the total available bandwidth are shared 
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according to some predefined flexible spectrum usage policy. This 

network deployment scenarios has been proposed by the IEEE 

802.22 working group in November 2004 [51, 52]. 

(j) In the second scenario the network comprises a number of 

licensed (primary) and unlicensed (secondary) APs/BSs. Primary 

APs/BSs operate on their licensed spectrum bands (primary 

channels), whereas secondary APs/BSs don’t have fixed licensed 

spectrum. Each primary BS can share its channel with one or 

more secondary BSs. In this case the primary station is given a 

prioritized access to its licensed spectrum band, whereas the 

secondary stations are served on the best-effort (non-prioritized) 

basis. Similar network deployment scenarios have been 

considered in [83 - 89]. 

(k) In the third scenario a network comprises a number of BSs 

operating on their fixed licensed spectrum bands. Each BS serves 

a number of primary and secondary users. Primary users (PUs) are 

the licensed network users who pay some price for accessing the 

wireless services, and therefore have priority in accessing the 

spectrum. Secondary users (SUs) are unlicensed network users 

who can access the wireless services for free on best-effort basis. 

Similar scenarios of the network deployment have been 

considered in [91, 92]. 

2. To increase the efficiency of resource allocation, prevent potential 

network congestions, decrease packet delay and connection loss for 

the wireless users, we deploy traffic prediction in the considered 

network architecture. Considering the known difficulty of parameter 

estimation for time-varying wireless channels and heterogeneous 

nature of the wireless traffic, comprising large number of different 

network applications (such as data, voice or video), we propose to 

use recursive estimation techniques applied with time-series models 

for traffic prediction. Unlike off-line estimation methods, these 

techniques do not require a long observation history, are highly 

adaptive and have modest memory requirements [106]. 

3. Different algorithms for resource allocation in cognitive wireless 

network architecture have been proposed. The objectives and the 

complexity of these algorithms vary depending on the considered 

cognitive user behavior and network deployment scenario. Most of 

these algorithms use a so-called cognitive cycle for resource 
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allocation, consisting of observation, information gathering and 

traffic prediction. Proposed algorithms have been implemented in 

cognitive network architecture based on IEEE 802.11g (Wi-Fi) and 

3GPP LTE standard networks. The algorithms efficiency has been 

evaluated using simulations conducted in OPNET platform [112].  

This thesis is organized as follows. Further in the Overview we 

review the latest research in the area of cognitive and cooperative 

networking in the section entitled Literature Review. The summary of 

main thesis contributions is provided in the Research Methodology 

section.  

Parameter estimation techniques and the time-series models proposed 

for traffic prediction in CRN are described in Chapter 1, which also 

provides the performance of these techniques based on results 

published in Proceedings of IEEE International Conference on Signal 

Processing and Communication Systems (ICSPCS) in 2010.  

A priority based packet transmission technique for an infrastructure 

based network WLAN is presented in Chapter 2. This technique can be 

used (together with one of the proposed resource allocation algorithms) 

to support future wireless network infrastructure to improve the 

capacity and the QoS for the users under all network deployment 

scenarios considered in the thesis. The corresponding paper has been 

published in Proceedings of IEEE Wireless Communications and 

Network-ing Conference (WCNC) in 2011.  

Chapter 3 is based on the contributions in two papers on the analysis 

of VoIP services performance in LTE network. The first paper who 

published in Proceedings of Australasian Telecommunication Networks 

and Applications Conference (ATNAC) in 2012. The other paper 

appeares in the International Journal of Internet Protocol Technology 

(IJIPT) in 2012. Performance analysis of LTE is a logical first step 

toward deployment of this network in B3G infrastructure. Performance 

analysis of LTE is carried out using VoIP user applications. VoIP 

services have the strictest (compared to other network applications) 

delay requirements: VoIP can only tolerate packet end-to-end delay of 

up to 100 ms and packet loss of up to 1% [116]. Thus, the ability of 

LTE to achieve good performance for voice applications will 

automatically guarantee a satisfactory QoS for other user applications.  

In Chapter 4 a resource allocation technique for LTE-based CRN in 

the first scenario is presented. Here we outline the algorithm for 
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resource allocation, show its implementation in LTE-based network 

infrastructure and analyze its performance based on some simulations 

in OPNET environment [112]. The corresponding paper appears in 

Proceedings of IEEE Wireless Communications and Networking 

Conference (WCNC), 2013.  

Chapter 5 is based on a paper published in Proceedings of IEEE 

International Congress on Ultra-Modern Telecommunications and 

Control Systems (ICUMT) in 2012. In this chapter a resource allocation 

technique for a combined LTE/WLAN CRN in the first scenario is 

presented. Here we focus on some specific challenges of resource 

allocation in the complex networks comprising more than one RAT 

propose the algorithm for spectrum access in combined LTE/WLAN 

architecture, and evaluate its performance based on results of 

simulations in OPNET environment [112].  

In Chapter 6 we present a novel approach for resource allocation in 

cognitive LTE network in the first scenario, derive a resource allocation 

algorithm, and present the results of algorithm performance based on 

simulation model developed in OPNET environment [112]. The 

corresponding paper is published in Proceedings of IEEE GLOBal 

COMmunications Conference (GLOBECOM) in 2013.  

A resource allocation technique for a cognitive LTE network in the 

second scenario is described in Chapter 7. The corresponding paper is 

published in Elservier Computer Networks Journal in 2014.  

In Chapter 8 the spectrum access algorithm for LTE-based CRN is 

the third scenario is summarized. The corresponding paper will be 

published in Proceedings of IEEE International Conference on Mobile 

Ad hoc and Sensor Systems (MASS) in 2014.  

The conluding remarks describing the practical implication of the 

proposed network architectire and resource management platform are 

provided in Conclusions. 

2 Literature Review 

Existing literature in the area of cooperative and cognitive networking 

can be arbitrary divided into three large groups. The first group of 

papers combines some cooperative coding methods to realize the 

cooperative diversity (for instance, [12, 16-18]), and various lower 

layer techniques for spectrum sensing and spectrum mobility (e.g., [27 
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– 30, 177 - 179]). The second group of papers investigate analytical

models of the user behavior and traffic load in cooperative and 

cognitive radio networks using either game-theoretic approach or some 

results in queuing theory (examples are [20, 21, 32, 40, 41]). The third 

group of papers examine application of different resource allocation 

techniques for cognitive access in OFDMA-based networks (e.g., [19, 

22, 23, 45 – 47, 50]). 

The studies on cooperative coding [12, 16-18] are mainly focused on 

physical layer signal processing and coding for cooperative networks. 

The cooperative system is represented by a multiple-input-multiple-

output (MIMO) system, formed by multiple source and relay antennas. 

All relaying methods use the same general procedure, in which a 

cooperation cycle consists of two phases. In the first phase, each user 

transmits parts of its own data and receives data from the other users. In 

the second phase, the users help each other by relaying the data they 

received in the first phase. Various cooperative diversity schemes 

define different ways of performing the second phase and representing 

the data of partner. Classification of existing relaying approaches is 

provided in Table 1 [4, 15]. 

Table 1. Classification of Existing Relaying Approaches [4, 15] 

Approach Data 

Regeneration 

Cooperative 

Diversity 

Coding Scheme 

Store & Forward (S&F)  Yes No - 

Amplify & Forward (A&F) No Yes - 

Compress & Forward 

(C&F) 

No Yes Compression 

Decode & Forward (D&F) Yes Yes Repetition 

Coded Cooperation (CC) Yes Yes Forward Error 

Correction (FEC) 

Space Time Coded 

Cooperation (STCC) 

Yes Yes Space-time & FEC 
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Good examples of spectrum sensing and spectrum mobility 

techniques for cognitive radio networks can be found in [177 - 179]. 

The opportunistic spectrum access (OSA) for interference 

minimization has been investigated in [177], where it has been shown 

that the implementation of OSA enhances the overall system 

performance by intelligent aggregation of the unutilized spectrum. 

Relay selection and resource allocation in cognitive relay network has 

been studied in [178]. It has been assumed that the primary stations 

communicate via a relay assisted network, some of the secondary 

stations play the role of the network relays, and the remaining nodes 

interact using a centralized algorithm in the licensed spectrum band. 

Simulation results have demonstrated that the proposed resource 

allocation algorithm shows increased throughput compared to the 

conventional random relay selection and uniform power allocation 

method. A cross-layer protocol for spectrum mobility and handover in 

cognitive networks has been presented in [179]. This protocol assumes 

a Poisson distributed model for the spectrum resources. An empirical 

performance study has illustrated that the proposed hand-off protocol 

significantly reduces the expected transmission time and the spectrum 

mobility ratio within the network.  

All above techniques are very effective for coded cooperation 

between the users, and identifying and reducing the interference in the 

physical channels, but do not improve the overall user-perceived 

quality of service (QoS) which is mainly expressed in terms of the 

packet end-to-end delay and loss for the network users. The results of 

these works can be applied only in combination with other techniques 

working on MAC and higher layers to provide the reduced delay and 

loss for the end-users [26]. Therefore, we will further focus only on the 

second and third group of papers where the implementation of 

cooperative and cognitive radio networks is investigated using network 

layer models to maintain qualitative service performance for the users.  

2.1 Cooperative Networks 

The concept of a cooperative diversity was first introduced by the 

works of Van der Meulen [11], Cover and El Gamal [12], and Gallager 

[13] on the relay channel. Relay channel is the simplest scenario of user 

cooperation in which a nearby terminal (called relay or partner) 
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forwards information from a source to the destination. Based on the 

works on relay channel, Sendonaris et. al. proposed a user cooperation 

diversity, in which the users were allowed to share their resources by 

acting both as a source and as a relay [14]. In a cooperation diversity, 

each user is represented by a distributed multiple antenna system. In 

contrast to relaying, the information from one source is forwarded via 

multiple channels between these antennas. The work of Sendonaris et 

al. attracted a lot of interest to the cooperative diversity, and lead to the 

development of a new research area called cooperative networking.  

In cooperative networking resource allocation and partner selection 

for cooperative users (i.e. selection of a best relay, called “partner”) is 

made based on certain optimization criterion. It is assumed that 

cooperative coding schemes are integrated into wireless networks to 

optimize the service performance of various multi-user systems. 

Clearly, the optimization objective depends on scenario, factors and 

system parameters of the optimization problem. Moreover, since it is 

not possible to consider all network parameters, only those scenario 

factor/system parameters which can be observed/modified at the 

corresponding node and related to the corresponding layer are useful 

for optimization. The classification of possible observable scenario 

factors (called observed parameters) and controllable system 

parameters (called controlled parameters) is shown on Figure 2. In 

optimization the observed parameters are used to select the optimal 

values of controlled parameters based on certain optimization objective. 

Consequently, the literature on resource allocation and partner selection 

techniques for cooperative users can also be classified according to the 

Figure 2.  

Most existing works on resource allocation for cooperative networks 

focus on various issues at the physical layer, where the advantages are 

often demonstrated using some information-theoretic approach. The 

only relevant papers are [19-24], where the MAC and higher layer 

issues of QoS provisioning in cooperative networks has been carefully 

addressed. Shan et al. [19] investigated the influence and integration of 

physical-layer cooperation with the MAC layer to increase the 

throughput and reliability of communication, and proposed a cross-

layer design for a cooperative MAC protocol. With channel and 

payload length adaptation, this protocol was used to support multiple 
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transmission rates and transmission modes, and outperformed the 

traditional non-cooperative MACs.  

         System ParametersScenario Factors

Channel

Location

Traffic

State/SNR

Interference
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Controlled 
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Observed 
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Fig. 2. Classification of possible resource allocation strategies 

A game-theoretic approach to solve the cooperation problems was 

applied in [20-21]. In [20] the Zhang et al. have analyzed the 

cooperative behavior of the nodes in a wireless network, and presented 

a cooperation bandwidth allocation strategy based on the Nash 

bargaining solution to solve two basic problems - when to cooperate 

and how to cooperate. Using simulations, the authors demonstrated that 

when cooperation takes place, users benefit from the proposed strategy 

in terms of utility, and those with longer distance to the access point 

(AP) should spend more bandwidth to cooperate with others. In [21] 

Huang et al. proposed two distributed algorithms, with the signal-to-

noise ratio (SNR) auction and the power auction, to determine relay 

selection and relay power allocation. It was shown that the power 

auction achieves the efficient allocation by maximizing the total rate 

increase, and the SNR auction is flexible in trading off fairness and 

efficiency. Authors also have shown the convergence of both 

algorithms to the unique Nash Equilibrium, and verified their 

effectiveness and robustness.  
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The problem of partner selection for non-altruistic node cooperation 

was studied in [22-23]: in [22] the authors proposed three schemes of 

partner selection with power control to balance the transmit power and 

system performance; in [23] the partner selection schemes were 

deployed to minimize the average outage probability. However, the 

MAC-layer service differentiation was not addressed in these papers. In 

[24], Zhang et al. proposed a simple two-step scheme for the system 

throughput maximization problem with physical-layer QoS assurance. 

However, the application layer QoS support was not taken into 

consideration. 

2.2 Cognitive Radio Networks 

User cooperation can increase the capacity of the radio networks to a 

certain extent, but cannot fully solve the problem of spectrum scarcity 

introduced by the traditional fixed bandwidth allocation strategy. To 

deal with this issue, a new spectrum access concept, called Cognitive 

Radio Network (CRN), has been proposed in the pioneering work of 

Simon Haykin [25]. In CRN available spectrum can be shared among 

the users. In this context, CRN is defined as an intelligent system that 

has the ability to perceive its environment, and then learn and adapt to 

the current network conditions [25, 26] with three potential tasks: 

 to sense the spectrum and model users’ behaviour; 

 to manage and share available radio resources;  

 to maintain qualitative service performance for users during the 

channel transition (end-to-end QoS) [25, 26]. 

Prior research works in CRNs (for example, [27-30]) were mainly 

focused on finding efficient ways to sense primary users, and let 

secondary users access the spectrum with minimal interference to the 

primary users. Even though this framework on physical layer is very 

important, the goals of CRN cannot be fully achieved without 

information gathering, processing, and control on higher layers [31]. 

Therefore, we will further review only the works where MAC and 

higher layer issues have been considered.  
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Resource Management in CRN 

Spectrum sharing enables the secondary users (SUs) to access the 

licensed band in a primary system without its modification [33]. In this 

case actions of SU are transparent for the primary system. The SU 

should vacate the frequency in primary system on arrival of the PU, and 

scan the frequency range to detect available band at the same time 

(spectrum handoff procedure). Centralized solutions for spectrum 

sharing problem mainly focused on centralized solutions ([34-35]) 

which should be avoided due to the non-centralized nature of wireless 

networks and potential propagation delays ([36-37]). Decentralized 

solutions were proposed in [38-39], but only for a homogenous 

environment.  

Different spectrum access schemes in open spectrum wireless 

networks were investigated in [32]. Two different types of radio 

systems with different channel requirements (3 and 9 overlapping 

frequency bands respectively) are assumed to operate in the same band. 

The offered traffic is modelled with two random processes per radio 

system: Poisson arrival traffic and negative-exponentially distributed 

radio system access. The authors use average airtime (which is referred 

as a ratio of allocation time to a certain reference time) per radio system 

to evaluate the fairness and blocking to evaluate efficiency. Applying 

these two parameters, they compare different spectrum sharing models: 

equal traffic without queuing, equal traffic with queuing, general traffic 

load, and random access models, and show that random access model 

achieves near-optimal weighted fairness. In the random model 

proposed by the authors radio systems do not access the unlicensed 

band in a greedy manner, but with some certain probabilities. Even 

though this model shows satisfactory parameters, it can be applied only 

for unlicensed band, and not applicable in the case when SUs entering 

the primary system. 

In another work the priority of primary users (PUs) is considered 

[40]. Instead of blocking, the authors introduce a finite queue to store 

the SU requests on arrival. Spectrum handoff is regarded as a priority 

policy for SU. Additionally, they develop a Markov approach to 

analyse the proposed spectrum sharing policies (with and without 

buffering) with generalized bandwidth size in both primary and 

secondary systems, and evaluate performance for SU using blocking, 

interrupted, forced termination, non-completion probability and waiting 
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time. Simulation results had shown that the buffer is able to 

significantly reduce the SU blocking and non-completion probability. 

Therefore buffering proposed in this work may be one possible solution 

of the spectrum sharing problem, but can be prohibitive for delay-

sensitive applications, and does not consider fairness. 

Unlike the work presented above, in [41] the authors investigate the 

aggregate throughput and proportional fairness of two independent 

secondary user groups in CRN. The PU spectrum is completely shared 

among two SUs groups. On the arrival of a PU connection, the 

interrupted SUs can move to other vacant subchannels (spectrum 

handoff). The new SU connections from each SU group are served on 

the First-In-First-Out (FIFO) basis. Using a continuous time Markov 

chain, the authors determine the individual and combined forced 

termination, blocking probabilities and aggregate throughput. The 

results show that fairness is ideal in case of equal service rates of SUs 

groups, and deviates from its ideal value as the different between 

service rates increases. For the fixed arrival rate of SU groups there 

exists an optimal service rate pair which maximizes the aggregate 

throughput. The latter conclusion can be possibly applied to solve the 

spectrum management problem for different groups of SUs. 

The most extensive investigation is presented in [26] where the 

authors develop a dynamic channel-selection scheme for autonomous 

wireless users transmitting delay-sensitive applications over the CRN. 

Considering heterogeneous network where users might have different 

channel requirements the authors propose a novel priority virtual queue 

interface that determines the required information exchanges and 

evaluate the expected delays. PU has priority to preempt the 

transmission of the SUs, while SUs are divided into groups with 

different pre-assigned priorities (depending on their QoS requirements 

and right to access the channel). Each SU may have one of the 

following two types of utility functions: the delay-based utility (for 

delay-sensitive applications), and the throughput-based utility (for 

delay-insensitive applications). The goal of each SU is to maximize his 

utility function. Modelling dynamic resource management problem as a 

multi-agent interaction, the authors present the following resource 

management scheme: (i) SU collect information from other SUs 

through the priority virtual queue interface; (ii) interface estimates a 

channel selection strategy of the SU, and performs priority queuing 
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analysis based to evaluate expected utility function; (iii) based on 

utility function, SU adapts its strategy; (iv) SU assigns each packet an 

action, selecting frequency channel; (v) the packet waits in queue to be 

transmitted. Simulation shows that proposed solution significantly 

reduces the packet loss rate and outperforms the conventional single-

channel dynamic resource allocation by almost 2 dB in terms of video 

quality. The results achieved in this work show that the proposed 

method to solve the spectrum sharing problem as a multi-agent 

interaction can be extended and applied in the future development of 

the spectrum sharing policy in CRN. 

The Architecture and End-to-End QoS for the Users of CRN 

The final goal of any research investigation in most cases will be the 

achievement of satisfactory results and practical solutions applicable in 

“real world”. In CRN this goal is one of the most challenging because 

of the complexity of this network. Therefore, development of clear 

architecture and internetworking mechanisms that will let to obtain 

guaranteed end-to-end QoS and implement this architecture in practice, 

is very important. Even though there exists several framework 

proposals for Cognitive Radio Architecture (for example, [25, 42-43]), 

most of them narrowly focused on some certain tasks, and lack a 

complete perspective on the problem. In this section the most relevant 

works in this area will be presented. 

In [31] the authors propose the architecture of the CogNet System 

following a fully distributed cognitive networking approach. This 

architecture presents a cognitive function through CogNet nodes 

collaboration. In each layer (from physical to application) it has a 

cognitive agent (CA) gathering information and controlling protocol 

parameters within that layer. Information and data exchange is carried 

out through an internal CogNet Cross layer Bus (CogBus). 

Coordination of CAs within one node and coordination with other 

nodes is carried by CogPlane lying across all layers. CogPlane contains 

a module called Cognitive Executive Function (CEF) that helps to 

understand data interaction and performance models across the layers 

and develop user requirement translation. Once an end-to-end user goal 

is defined, CEF is responsible for translating the end-goals to 

executable action items required for each layer. The CogPlane provides 
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an opportunity for dynamic resource allocation and management with 

the help of the past history of the user, the device and network. CogNet 

Access Point (AP) is an autonomous form of the CogNet architecture. 

It has the capability of using higher layer traffic information for 

efficient management of the network resources. AP has two interfaces: 

the service interface to provide network services to the users or client 

nodes which are associated to this AP, and the monitoring interface for 

constant monitoring of the channels. CogNet AP builds statistical 

models based on its traffic observation. These models (MAC and 

higher layers) are built from the packets received at the CogPlane, and 

exploit the temporal behavior of the network traffic activity in the given 

area. The proposed CogNet AP has been deployed in two test-bed 

environments: residential and office. The experiments had shown that 

the throughput achieved by end-user devices provided improvement of 

about 5-10% and 10-15%, which shows that this architecture can be 

deployed for future research. Unfortunately, the results were derived 

for the system operating in a homogenous environment, and 

performance of the proposed model in real heterogeneous conditions 

was not measured [31]. 

A component-based approach to construction of the control and 

management in CRN is applied in [44]. The proposed architecture 

consists of: 1) Cognitive Resource Management (CRM) core composed 

of a set of a pluggable behaviour components, 2) generic interfaces 

components to support transparent access to underlying system, 3) 

distributed control and coordination modules, and 4) a policy engine. 

Components are encapsulated units of functionality and deployment, 

which may interact only through well defined interfaces and 

receptacles. The CRM core provides the administrative framework to 

coordinate the construction of the system, and the control framework to 

coordinate the actions of the components. The control framework is 

composed of behaviours, generic interfaces, action brokers, action 

resolvers, distributed control components and a police manager. The 

listed components are described as follows: 

 A behaviour is simply a unit of goal directed functionality, which has 

the following properties: i) it collects some input for processing, ii) it 

evaluates the input(s) collected, and iii) it suggests some action(s) to 
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perform based on evaluation. Therefore, the behaviour is simply a 

coupling of some set of input, processing, and output mechanisms. 

 Generic interfaces abstract the varied and complex implementation of 

various protocol layers and present them in a consistent and 

systematic manner. The authors use Universal Link Layer API 

(ULLA) for radio and link level, GENI – for transport and network 

layers, and Common Application Requirement Interface (CAPRI) to 

interface between applications and the CRM.  

 Action brokers collect together sets of dependent behaviours and 

provide a means to choose between their proposed actions – in effect 

the behaviours dispatch their decisions to action brokers.  

 Action resolvers are contained within the action brokers and 

implement the resolution method to be used by the broker. In effect 

action resolvers define how a broker chooses between the candidate 

actions represented by the behaviours it groups.  

 Distributed control and coordination components support provide the 

mechanism and abstractions to support control and coordination in a 

transparent manner. 

 Policies are required to provide operation constraints to the CRM, 

and they may be static or dynamic with respect to time and 

geographical location. 

In the paper the authors presented an example of cross-layer 

application aiming to jointly optimise video and MAC parameters in 

order to maximize the video throughput. This early prototype was 

implemented as a part of ARAGORN project so as to test architectural 

primitives. Unfortunately, clear results and conclusions about the 

effectiveness of this system are not shown in the paper, and the 

performance of the proposed architecture is not known. Nevertheless, 

the component-based approach applied in the paper worse to be 

mentioned, because it might help to solve the fundamental design 

problems arising due to the large numbers of involved hardware and 

software modules [44].  

Nowadays, there is little research in the area of QoS provisioning in 

CRN. Some papers use cognitive probe packets to guarantee end-to-end 

QoS. This can increase network load and affect capacity of the network 

[45-47]. The others propose cognitive algorithms that can solve the 

problem but are not very effective at the current moment [48-49]. The 
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most relevant investigation in this area was conducted in [50], where 

the authors present a QoS provisioning scheme. Based on the feedback 

on current network conditions, this scheme finds and even predicts the 

bottleneck of the network performance, takes some reactions in 

advance, and provides end-to-end QoS guarantee. The proposed 

architecture of CRN in [50] is the following: all network elements 

(mobile terminals, APs, routers etc.) are classified as reconfigurable 

nodes (RNs) (terminals of different access networks) and cognitive 

intelligence nodes (CINs) (other network elements able to control and 

manage RNs). The RNs are reconfigurable and equipped with cognitive 

radio technology which has the properties of sensing, awareness, 

adaptation, and learning capabilities. Cognitive core network is 

composed of heterogeneous CINs located in different places. 

According to the network conditions reported by RNs, the CINs orient 

the priority attached to any observation, plan action(s), and decide the 

most appropriate modification(s). After a modification, the actions and 

corresponding changes of the overall network are stored in repository 

and can be used as reference for future. The QoS components have the 

function of QoS measurement, analysis, adaptation, and feedback. 

According to the division of heterogeneous network, the end-to-end 

QoS can also be divided into several cognitive QoS components. The 

cognitive QoS components can measure QoS performance in local 

domain. QoS analysis is performed to analyse the conditions and make 

decisions based on the observed service requirements and network 

status. QoS downgrade events can be found/ predicted in partial or end-

to-end path. In this case QoS feedback notifies QoS components about 

the downgrade event, and components cooperate with others to adapt 

QoS policy based on the current network status and previous stored 

experience. Besides, each QoS component can negotiate SLAs with the 

neighbouring domain, map QoS policies, and execute traffic 

conditioning as the non-cognitive QoS components. To integrate each 

host on the end-to-end path the QoS provisioning model uses end-to-

end signalling supported by Next Steps in Signalling (NSIS) 

mechanism. The reason behind choosing NSIS for signalling is that it 

can configure resource for services with high priprity of QoS 

requirements in advance. However, NSIS is still under research, and is 

a big challenge for heterogeneous CRN. The authors also mention that 

although QoS guarantee schemes for CRN has been proposed, the end-
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to-end QoS provisioning for cognitive heterogeneous network is still in 

blank. More problems are still in the future, such as intelligent and 

effective CRN discovery, or QoS routing mechanism using cognitive 

algorithms [50]. 

3 Research Methodology 

3.1 Research Objective and Goals 

The objective of this research project is development and 

implementation of heterogeneous IP based wireless access 

infrastructure upon the existing radio standards with the objective to 

provide higher capacity and QoS to the network users through the 

support of cooperative and cognitive functionalities. 

In this context, this research project aims to:  

2. explore the potential ways of implementing the future wireless 

infrastucture based on existing wireless networking standards;  

2. study the main principles of cooperative and cognitive 

communication which lie in: 

(a) cooperation and information exchange between all member 

subnetworks; 

(b) support of reconfiguration capabilities of all nodes/user terminals 

within the network; 

(c) coexistence of the nodes/user terminals belonging to different 

RATs comprising the network;  

(d) intelligent resource planning involving cognitive reactive and 

proactive management of the network resources based on external 

(environmental) aspects, as well as on goals, capabilities, 

experience and knowledge. 

3. develop the efficient radio resource management platform in order to 

provide increased spectrum utilization and enhanced end-to-end QoS 

for users of different RATs with and without fixed spectrum 

allocation.  

4. investigate the problems of co-existance, intra- and cross-layer 

control between different RATs comprising the network, including: 
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(a) PHY layer channel modeling, including noise and interference 

models, log-distance path loss, shadow and multipath induced 

fading, physical layer transmission techniques (MCS, AMC); 

(b) MAC/RLC layer design, including traffic generation models, 

packet scheduling, ARQ/HARQ, DCF/HCF, buffer status 

reporting, etc.; 

(c) Cross-layer control: necessary parameters (such as packet arrival 

rate, buffer occupancy, SINR) are observed on MAC and PHY; 

control of available resources (such as bandwidth, data rate, buffer 

capacity) on PHY layer; 

(d) Application layer QoS for users as a result of undertaken control 

on PHY/MAC layer. 

3.2 Main Research Contributions 

As has been indicated in Literature Review, a significant progress has 

been made in resource allocation and management in cognitive and 

cooperative radio networks. However, many challenges still remain. 

For instance, many of the theoretical works where the analysis of 

cooperative and cognitive networks is made using game-theoretic 

approach or queueing theory (e.g., [20, 21, 32, 40, 41]) are often very 

general and do not comply with specific features of different wireless 

networking standards, which means that the results of these works 

cannot be deployed in the “real-world” environment. Besides, in many 

of these works the performance of the wireless system is analyzed 

using parameters defined by authors themselves (see [40, 41]), whereas 

the end-to-end QoS of the users is not evaluated.  

Improvement of the overall user-perceived QoS is the focus of the 

other works studying different resource allocation techniques and their 

application in specific RATs ([44-47, 50]). In these works resource 

allocation problem is formulated in terms of some optimization 

problem where some user utility is maximized subject to capacity 

constraints, interference requirements of PUs, etc. Most of these works 

maximize total network throughput, minimize transmission or 

propagation delay for the users ([44 - 47]). Although these optimization 

targets are easy to obtain analytically, they do not always imrove user-

perceived QoS, since in many wireless networking standards (such as 

Wi-Fi or LTE) the total throughput and total packet end-to-end delay 

http://en.wikipedia.org/wiki/Log-distance_path_loss_model
http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
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are greatly influenced by many parameters. For instance, in LTE 

networks the packet end-to-end delay and loss can increase in times 

even if the transmission delay is small due to large amount of control 

signaling or noisy erroneous channels because of the scheduling and 

HARQ procedures [93], whereas in Wi-Fi networks packet end-to-end 

delay and loss greatly depend on contention in the wireless medium 

[69].  

Another important factor that has not been considered in prior 

research is a heterogeneous nature of CRN. Most existing works (for 

example, [32]) on spectrum management and end-to-end QoS 

provisioning for CRN focus mainly on homogenous scenarios, ignoring 

the potential problems that could arise in a heterogeneous case 

(differences in QoS requirements, channel conditions, traffic priorities, 

etc.). Although such simplified approach may be allowed at the 

beginning of investigation, it does not give effective and practically 

realizable solutions.  

This research project contains a collection of different resource 

allocation techniques designed to combat the challenges listed above, as 

well as to deal with some other aspects of the future wireless networks 

(such as heterogeneous users traffic, presence of multiple RATs, etc.). 

Although we consider the application of these techniques to specific 

wireless network interfaces (Wi-Fi and LTE), most of them can be 

deployed in any OFDMA-based network. In this thesis we consider 

three different network deployment scenarios, and offer some general 

network architecture and resource allocation policy which can be 

implemented using any of the proposed algorithms to improve the 

overall capacity and QoS in the network. For instance, in most of these 

algorithms we use buffer (queue) size in the bottleneck nodes of the 

network QoS indicator (or user utility), since buffer tends to grow when 

the network is congested (which might happen not only in case when 

the network is overloaded, but also if there are many errors or collisions 

in wireless channels).  

We also consider that additional control signaling over the wireless 

medium can reduce service performance substantially, and therefore 

use IP-based infrastructure for control communication. Finally, most of 

the methods proposed in this project can be effectively used to deal 

with heterogeneous network environments: several attempts to solve 

this problem have been made previously, but most of the existing 
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techniques for heterogeneous traffic are either very complex (such as 

[76]) or lead to rather unfair resource allocation in the sense that 

applications with lower demand are allocated a higher transmission rate 

than applications with higher demand (e.g., [77, 78]).  

Research Methodology 

There are numerous ways for enforcing the optimal resource 

allocation in CRNs. One way is to build a stochastic model of the 

network (see, e.g., [40], [41]) characherized by one or mode stochastic 

parameters and/or one or mode deterministic parameters. After this, one 

can derive a stochastic optimization problem, according to which the 

network resources (service rate, bandwidth, power, etc.) will be allocate 

dynamically based on obtained optimal solutions of the problem. This 

way of resource allocation is very dependent on representation of 

probability density functions describing the stochastic external and/or 

iternal system parameters. In other words, if the stochastic parameter is 

not correctly modelled, then the consistent performance of the 

algorithm cannot be guaranteed. In CRNs, the stochastic parameters 

usually represent the external system parameters, such as user 

behaviour (duration of ON-OFF session periods, amount of generated 

traffic, etc.) or noise in the wireless channels. However, given the 

known difficulty of such parameters as traffic pattern of the users or 

channel noise, the accurate stochastic modelling is not always possible 

[180], [181]. 

An alternative research methodology for resource control in CRNs is 

based on game theory. In this case the resource allocation to the users is 

modelled as a game in which each user represents the player with the 

goal to maximize its utility. Many of such games have been formulated 

as non-cooperative (e.g., [182] – [184]). In these games, rational users 

(players) selfishly maximize their individual utilities without being 

concerned about the impact of their strategies on other users. A typical 

solution to a non-cooperative game is a Nash equilibrium solution 

(NES), in which each player has no chance to increase its utility by 

unilaterally deviating from this equilibrium. Unfortunately, the NES 

has been proven to be inefficient, meaning that the achievable total 

network utility can be low compared to the centralized optimization 

[185]. The non-cooperative game theoretic framework is very well 
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suited to network scenarios where infrastructure is sparse or completely 

absent, as in peer-to-peer and ad hoc networks. However, in 

infrastructure-based networks like cellular, broadband access, and to 

some extent wireless local access networks, where a centralized 

operator retains control over the common resource, the purely non-

cooperative model is overly pessimistic, as it may not be able to fully 

capture the gain that could be obtained from coordination [186].  

In order to find a Nash equilibrium that is more Pareto efficient, 

pricing mechanisms have been investigated ([187] – [189]). Pricing is 

typically referred to the penalty paid by each player. Pricing does try to 

move the users’ behaviour to benefit the network, but this entails 

finding the right cost function, which sets up another optimization 

problem to solve.  

While non-cooperative game theory studies competitive scenarios, 

cooperative game theory provides analytical tools to study the 

behaviour of rational players when they cooperate. The main branch of 

cooperative games describes the formation of cooperating groups of 

players, referred to as coalitions [190]. Coalitions can strengthen the 

players’ positions in a game. Coalitional games have also been widely 

explored in application to distributed power control in CRNs for 

improving the network performance ([190] - [192]). However, 

implementing cooperation in large scale networks faces several 

challenges such as adequate modelling, network efficiency, complexity, 

and fairness. We further note that, for dynamic resource control, game 

theory has the disadvantage of fluctuation in external system 

parameters (user traffic, noise and interference) before the games 

converge [193]. 

The general research methodology used in this thesis for the 

development of resource allocation techniques (described in Chapters 4 

– 8) is the following.  

 First, we build analytical model describing the traffic behaviour and 

usage pattern in the considered network deployment scenario. This 

analytical model is fully deterministic, which means that each 

parameter in this model can be either observed (by the users or at the 

base station) or more or less accurately estimated using any of the 

prediction techniques provided in Chapter 1.  
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 Next, we formulate the objective of resource allocation (overall 

network utility), and state corresponding optimization problem.  

 Based on this optimization problem, we derive a resource allocation 

algorithm, and implement it in the simulation model built upon the 

OPNET platform [112]. The simulation models of the users in all 

chapters (except Chapter 1) are the standard 3GPP2 traffic generation 

models described, for instance, in [194]. 

 Finally, we evaluate the service performance of the algorithm by 

comparing its performance with the performance of conventional 

and/or previously proposed resource allocation techniques. The 

validity of simulation results in this thesis is justified by high number 

of observations (10 ÷ 20 observations for each observation point in 

the graphs) which we collect with different random seed states (the 

seed value can be chosen in OPNET simulator). After collecting the 

results for each observation point, the average value is calculated, 

and is used to plot the final graph. Therefore, the accuracy of 

simulation results provided throughout this thesis is relatively high. 

The main advantages of the proposed approach for resource 

allocation are rather straightforward.  

 First of all, it achieves socially beneficial results by maximizing the 

overall network utility.  

 Secondly, all of the proposed resource allocation algorithms yield 

optimal or near-optimal results, because here we rely on 

deterministic or predicted values of generated traffic and SINR, 

rather than on stochastic system parameters. Here we have to 

mention that the in case if we use traffic prediction in the algorithm, 

the resource allocation performance depends on the prediction 

accuracy. However, as we will show in Chapter 1, the prediction 

technique used in some of the algorithms in Chapters 4 – 8 is rather 

accurate (prediction error is less than 1%).  

 Finally, almost all algorithms have low or moderate computational 

complexity, which provides the possibility to enforce resource 

control in large-scale networks. 
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Network Architecture 

The IP based cognitive network architecture has been deployed upon 

the Wi-Fi (IEEE802.11a, g versions) and the 3d Generation Partnership 

Project (3GPP) long-term evolution (LTE) standard networks. These 

standards have been chosen because of the following reasons: 

 both LTE and Wi-Fi are OFDMA-based standards, and therefore are 

suitable for the IP-based architecture; 

 it is anticipated that LTE will get a widespread deployment in near 

future because of its high capacity, while Wi-Fi is already very 

popular; 

 both Wi-Fi and LTE offer high service rates in the network, and 

therefore can support multimedia users; 

 both Wi-Fi and LTE offer spectrum flexibility (scalable bandwidth 

for LTE and flexible data rate for Wi-Fi). 

Network Deployment Scenarios 

Most widely considered model of cognitive user behavior in the past 

has been based on non-cooperative network deployment scenario 

(shown on Figure 3). In this scenario, each secondary node senses the 

spectrum to find (on its own) the available unused bandwidth (spectrum 

hole) from primary node, and utilizes it according to the requirements 

of this primary node. At any time the connection of the secondary node 

can be blocked by the primary node (which usually happens in case if 

the bandwidth used by the primary node at the current state is not 

enough to satisfy the requirements of the primary node exceed the 

contemporary level) [33-34, 40-50]. Such network models have many 

disadvantages mainly because of the absence of cooperation and 

information exchange between all member nodes. As a result, 

secondary nodes will spend more time on unnecessary channel sensing 

and competing for access to the licensed spectrum bands, which 

eventually will lead to very poor service quality and increased power 

consumption of the user terminals. 

In contrast to this approach, in this research project a different model 

of cognitive user behavior is proposed in which all member nodes 

cooperate by exchanging their network status information, and share 

the available spare capacity in an orderly manner. Information 
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exchange and coordination between the nodes will allow maximizing 

the overall capacity and QoS of the network. Secondary nodes will be 

able to (temporarily) borrow network resources in a more efficient 

manner to minimize blocking of connections, and also the need for 

continuous physical layer channel sensing will be eliminated, which 

will help to reduce the power consumptions of user terminals. 
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Fig. 3. A non-cooperative network deployment scenario 

In this work integration of the cooperative and cognitive 

functionalities with the network infrastructure has been studied based 

on three most widely considered network deployment scenarios. 

Scenario 1: A typical IEEE 802.22 standard Wireless Regional 

Area Network (WRAN) architecture comprising a number of 

service providers (SPs) with their base stations (BSs) as shown on 

Figure 4. Within the network, the SPs share the total available 

bandwidth among each other using the spectrum manager (SM) 
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according to some predefined flexible spectrum usage policy [51, 

52]. All SPs/BSs have equal priorities in accessing the spectrum.  
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Fig. 4. IEEE802.22 standard network architecture (Scenario 1) 

Scenario 2: A cognitive radio network architecture consisting of 

primary (licensed) BSs operating on their licensed spectrum bands 

(primary channels), secondary (unlicensed) BSs and SM (Figure 5). 

Each primary BS (PBs) can share its channel with one or more 

secondary BSs (SBs). In this case the primary station is given a 

prioritized access to its licensed spectrum band, whereas the 

secondary stations are served on the best-effort (non-prioritized) 

basis. Similar network deployment scenarios have been considered 

in [83 - 89].  
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Fig. 5. Cognitive radio network architecture in Scenario 2 

Scenario 3: A cognitive radio network architecture comprising a 

number of SPs with their BSs and SM as shown on Figure 6. Each 

BS operates on its licensed spectrum bands, and serves a number of 

primary and secondary users. Primary users (PUs) are the licensed 

network users who pay some price to their SPs for accessing the 

wireless services, and therefore have priority in accessing the 

spectrum. Secondary users (SUs) are unlicensed network users who 

can access the wireless services for free on best-effort basis. Similar 

scenarios of the network deployment have been considered in [91, 

92]. 

In all scenarios above the IP links between SM and BSs are used to 

provide cooperation and information exchange within the network, and 

therefore the need for additional signaling over the wireless medium is 

eliminated. This issue is very important for the wireless network where 

the control signaling overheads introduce the additional delay, and have 

negative influence on user-perceived QoS.  
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Fig. 6. Cognitive radio network architecture in Scenario 3 

3.3 The Framework in Scenario 1  

In this section a general framework on network modeling and resource 

allocation in Scenario 1 is briefly described. Mode detailed outline of 

the network model and spectrum access algorithm is provided in 

Scenario 1 is given in Chapters 5 – 7.  

The IEEE 802.22 CR standard network architecture [51, 52] has been 

proposed in attempt to solve the problem of spectrum scarcity and 

reduced service quality created by the use of conventional fixed 

spectrum resource allocation policy. It has been proposed that the 

wireless access will be provided by a Wireless Regional Area Network 

(WRAN) comprising a number of SPs with their base stations. Within 

the network, the SPs share the total available bandwidth among each 

other using the spectrum manager (SM) according to some predefined 

flexible spectrum usage policy [51]. The standard describes the overall 
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network topology and a general dynamic spectrum access (DSA) 

framework on physical (PHY) and medium access control (MAC) 

layers, whereas the exact algorithm for spectrum allocation is not 

specified [52].  

It is rather straightforward, that in order to realize great opportunities 

offered by IEEE 802.22 CR architecture, an appropriate choice of DSA 

policy is very important. However, development of the suitable 

spectrum allocation technique is a challenging task given the known 

difficulty of modeling and measuring the wireless medium [53]. 

Although a significant progress in diverse cognitive techniques during 

the last few years, many challenges still remain [54]. For instance, most 

research has focused on individual techniques for identifying and 

reducing the interference (by controlling transmit power, carrier sense, 

or scheduling) for the users of CR network (for instance, [55 - 58]). In 

general, however, the system performance depends on many external 

factors, including user behavior, traffic load, channel quality, etc. [54].  

Some theoretical models of the user behavior and traffic load in CR 

network have been proposed in [59 - 62], but the assumptions made in 

theoretical research often fail under realistic operating conditions due to 

the fact that a system may operate in diverse environments (e.g., in 

different types of city, rural, campus, and indoor deployments) [54]. It 

is therefore very difficult to obtain some general theoretical model 

which can be applied for different network deployment scenarios. More 

rational would be to:  

1. identify most critical parameters affecting the system performance; 

2. investigate all available tools to analyze the service quality in the 

network based on the certain parametric observations collected in 

different locations at different time, and  

3. apply these tools in spectrum allocation algorithm in order to 

improve the service performance of CR system [54].  

Based on these considerations, we propose an alternative approach 

for resource allocation in IEEE 802.22 CRN by deploying 

reinforcement learning [63, 64] and using traffic prediction instead of 

complex analytical parameter modeling (description of the prediction 

technique applied in all scenarios is given in Chapter 1). This approach 

is further applied to three different resource allocation schemes derived 

for LTE, WLAN and combined LTE - WLAN networks which are 

briefly described below. 
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Resource allocation scheme for LTE based CRN 

Proposed network model consists of a number of evolved NodeBs 

(eNBs) connected to a network resource manager (NRM) via IP based 

links. Assuming, that each eNB is characterized by a concave 

increasing utility function and positive weight, we conduct a weighted 

utility maximization framework, and develop a simple prediction-based 

resource allocation (PRA) algorithm.  

Proposed way of resource allocation in the model has been induced 

by the concept used in traditional optimal flow and congestion control 

(OFC) where the resources are assigned based on speed of load 

increase in the bottleneck nodes [65]. This way of resource allocation 

prevents the growth of queues in eNBs (the growth of the queues in user 

terminals is neglectably small and usually do not lead to significant 

increase of delay or loss in the network). PRA firstly identifies eNBs 

with increasing (decreasing) load using appropriate load indicator, and 

then decrease (increase) the channel utilization of eNBs with increased 

(decreased) load using weighted proportional fairness criterion [66].   

The values of load indicators in algorithm are obtained from the 

medium access control (MAC) and physical (PHY) layer information 

gathered from eNBs. Unlike most of the congestion and flow control 

algorithms where the nodes are described by some simple binary load 

indicators (congested or not congested node) [67, 68], PRA uses 

modified load indicators (MLI) described by more complex functions 

depending on queue size, loss and channel state information. To further 

increase the algorithm efficiency, resource allocation is performed based 

on predicted values of load in eNBs. 

Resource allocation scheme for combined LTE - WLAN based CRN 

Consider a combined LTE/WLAN network architecture comprising a 

number of service nodes (LTE eNBs and WLAN APs) connected to the 

System Architecture Evolution Gateway (SAE GW) via IP links. 

Control of the network resources is performed by the Network 

Resource Manager (NRM) located in SAE GW.  

Resource allocation for heterogeneous networks consisting of 

multiple sub-networks based on different RATs (WLAN and LTE in 

our case) is a complex task due to diverse nature and the requirements 

of different networking standards. In such a network the impact of 
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physical layer characteristics (such as channel quality, spectrum 

efficiency, etc.) should not be underestimated. In other words, given the 

same bandwidth, the throughput in LTE eNBs and a WLAN APs will 

be different. Another important issue that should be considered is the 

packet mode channel access methods used in LTE/WLAN service 

nodes. For instance, IEEE 802.11 WLAN network uses contention 

based random multiple access technique for channel access over the 

wireless medium. This technique is usually characterized by numerous 

collisions, which can reduce the achievable throughput of WLAN users 

[69]. In LTE network the (potential) contention is resolved by using a 

Random Access Contention Resolution and Scheduling Request (SR) 

procedure. Hence, the collision probability in a LTE network is close to 

zero, thus, does not affect the service rates of LTE nodes [70].  

Initial approach for resource allocation in combined LTE/WLAN 

CRN is very similar to the one deployed in LTE CRN. Each AP/eNB is 

assigned with appropriate bandwidth proportional to the value of its 

load control (LC) indicator, which measures the degree of load 

variation in service node. In this way a larger bandwidth is assigned to 

service nodes with increasing load, and smaller – to the nodes with 

decreasing load. The difference between the algorithm used for 

resource allocation in combined network and the algorithm used in LTE 

network is in the way the LC indicators are obtained. To be able to 

account for different spectral efficiencies, and channel access 

techniques deployed in LTE eNBs and WLAN APs, the spectrum 

efficiency and collision ratio metrics are measured discontinuously in 

each service node, and further used to calculate the values of LC 

indicators together with predicted traffic load in APs/eNBs. 

Resource allocation scheme for WLAN based CRN 

According to [54], the individual spectrum bands are used in a fairly 

homogeneous fashion. In contrast to them, the usage pattern in CRN is 

in general heterogeneous. Consider, for instance, the intra-campus 

network where some of the APs in this network can be located in 

academic schools, other APs can serve the staff buildings and the 

school libraries, whereas the rest can provide the wireless access in 

residential areas. It is reasonable to expect that the usage pattern in APs 

will be very different. For instance, the school APs might experience 

http://en.wikipedia.org/wiki/Packet_mode
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heavy demand during the lecture hours and will not be used the rest of 

the time, the APs located in the offices and libraries will be loaded 

during the day-time and empty during the night, whereas the APs in 

residential buildings will be mostly used in the evening and night time. 

The web applications and traffic patterns of the individual users of 

these APs might also vary: the students and staff in the offices and the 

libraries might access the e-mail and perform the web-search, whereas 

in residential buildings the VoIP, video and on-line games might be 

used more frequently. Thus, to build a practically sustainable system it 

is important to keep in mind that different APs might operate in 

different conditions, i.e. the network usage is location and time 

dependent and the service demand in the network is heterogeneous.  

Most of the resource allocation strategies for CRN have been 

deployed for homogeneous scenarios and not very efficient in case of 

heterogeneous network applications [59 – 61, 71 - 74]. This is due to 

the fact that all users in the network are characterized by similar utility 

functions. Existing approaches to deal with the problem of resource 

allocation in the network with heterogeneous user demands (for 

instance, [62, 75 - 78]) are either very complex (such as [76]) or lead to 

rather unfair resource allocation in the sense that applications with 

lower demand are allocated a higher transmission rate than applications 

with higher demand ([77, 78]). Therefore, in this work we suggest 

another approach for resource allocation in CRN, and propose to make 

a short-term resource allocation based on the long-term traffic 

prediction. 

We consider the standard IEEE 802.22 CRN architecture comprising 

of Wi-Fi APs which share the total available bandwidth using the SM 

according to some predefined spectrum usage policy on a discrete-time 

basis. The system serves a number of wireless users connecting to the 

APs in their service area (cell) and generating a random traffic. 

Considered system can be well described using a model in which each 

AP is represented by a single infinite queue, whereas all users 

connected to the AP form the source served by this queue. The service 

rate of each queue depends on the portion of bandwidth assigned to 

respective AP and the spectrum efficiency of the wireless channel 

between the user and the AP. In this system we set the objective to 

allocate the service rates of APs in such way that the total system 
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bandwidth will not exceed the predefined limit based on some 

optimality criterion. The appropriate choice of the criterion is 

apparently one of the most critical factors affecting the performance of 

resource allocation for practical network implementations [75].  

For most of the network applications (such as voice, video, data), the 

user-perceived QoS is determined in terms of the packet end-to-end 

delay and packet loss experienced by the user. For instance, for VoIP 

applications the satisfactory service is achieved when packet end-to-end 

delay does not exceed 300ms with packet loss less than 5%; for 

videoconference users the QoS requirements are the same as for VoIP 

applications; for streaming video the packet end-to-end delay should 

not exceed 4-5 sec with packet loss less than the QoS requirements for 

video applications are the satisfactory service network performance is 

achieved when packet end-to-end delay does not exceed 200ms with 

packet loss less than 1% [79]. Therefore, it would be reasonable to 

represent the optimization objective in terms of the packet delay or 

packet loss. However, in general it is very difficult to estimate the 

values of the packet delay or loss accurately, because they depend on 

many network parameters some of which might not be possible to 

observe directly. More convenient would be to use the queue size as an 

optimization objective because: i) it can be easily estimated using the 

Lindley’s equation [80]; ii) it is the key parameter affecting both packet 

delay and loss.   

Based on these considerations, we propose to represent the 

optimization objective in terms of the aggregate size of the queues over 

the long-term period in the future. In this way the resources will be 

allocated to APs to minimize the size of queues in the long-term future, 

which guarantees that bandwidth will be assigned in fair manner (the 

applications with lower average demand are allocated lower service 

rate than the applications with higher demand) and helps to overcome 

the negative impact of the bursty traffic on the overall QoS for the 

network users.  

3.4 Framework in Scenario 2  

In this scenario the problem of resource allocation for CRN based on 

the standard LTE network is considered. The advantages of LTE 
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system include increased peak data rate of up to 100Mbits/s for 

downlink and up to 50Mbits/s for uplink; improved spectral efficiency 

of up to 5bits/s/Hz for downlink and up to 2.5bits/s/Hz for uplink; 

improved cell edge performance (in terms of bit rate) and reduced 

latency [81]. Further, LTE can be deployed in different frequency 

bands of different sizes ranging from 1.4 MHz to 20 MHz and comes as 

both paired and unpaired bands. Paired frequency bands implies that 

uplink and downlink transmissions are assigned separate frequency 

bands, whereas in the case of unpaired frequency bands, uplink and 

downlink must share the same frequency band [82]. Such appealing 

characteristics make LTE to be the one of the most promising wireless 

standards for deployment in future CRNs. 

Considered network model consists of a number of licensed 

(primary) eNBs sharing their licensed spectrum bands with unlicensed 

(secondary) eNBs using a central network manager (CNM) according 

to some predefined resource allocation policy. The eNBs are connected 

to the backbone server via a central network manager (CNM). 

Communication between eNBs, a backbone server and CNM is realized 

via the high-speed IP links to support fast transmission of data and 

control information. Each primary eNB operates on its fixed licensed 

spectrum band (primary channel) of a certain capacity. The primary 

eNB can share its channel with one or more secondary eNBs which 

don’t have fixed licensed spectrum bands. In this case the primary eNB 

is given a priority in accessing the primary channel, whereas the 

secondary eNB(s) can access the primary channel on best-effort (non-

prioritized) basis. The amount of capacity that primary eNBs share with 

secondary eNBs depends on the resource allocation policy used in 

CNM.  

Different resource allocation algorithms have been proposed recently 

for resource allocation in LTE-based CRN architecture. Most research 

has focused on designing the lower layer techniques for spectrum 

sensing and spectrum mobility in CRN. The opportunistic spectrum 

access (OSA) for interference minimization in LTE-A has been 

investigated in [83]. It has been shown that implementation of the OSA 

in LTE-A enhances the overall system performance by intelligently 

aggregating otherwise unutilized spectrum. Relay selection and 

resource allocation in LTE-A cognitive relay network has been 

investigated in [84]. It has been assumed that primary stations 
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communicate via a relay assisted LTE-A network, some of the 

secondary stations play the role of the network relays, and the 

remainder nodes interact using the centralized network algorithm in the 

licensed spectrum. Simulation results conducted in the paper have 

shown that the proposed resource allocation algorithm shows increased 

throughput compared to the conventional random relay selection and 

uniform power allocation method. A cross-layer protocol of spectrum 

mobility and handover in cognitive LTE networks has been presented 

in [85]. The protocol has been developed based on the consideration of 

the Poisson distribution model of spectrum resources. Simulative 

performance study has illustrated that the proposed handoff protocol 

significantly reduces the expected transmission time and the spectrum 

mobility ratio within the network model.  

The above techniques are very effective in identifying and reducing 

the interference in the physical channels, but do not improve the overall 

user-perceived quality of service (QoS) which is mainly expressed in 

terms of the packet end-to-end delay and loss for the network users. 

Theoretical studies of the user behavior and traffic load in CRN have 

been conducted in [86 - 89], but the assumptions made in these papers 

were very general in the sense that the specifics of LTE architecture 

have not been considered. Statistical traffic control scheme to ensure 

the QoS guarantees for all admitted traffic sources in cognitive LTE-A 

network has been proposed in [90]. However, the problem of user 

priority has not been addressed in the paper. In other words, it has been 

assumed that all traffic sources have the same priority.  

We propose an alternative approach for resource allocation in LTE-

based CRN. In order to provide the wireless access to secondary 

stations without compromising the QoS for the users of primary eNBs, 

we allocate the resources separately for primary and secondary eNBs 

using a two-stage procedure. During the first stage the resource are 

allocated for all primary eNBs to maximize the QoS for their users. 

During the second stage the rest of the service capacity of the primary 

channels is distributed among secondary eNBs.  

Based on this approach, we derive two different algorithms for 

resource allocation in LTE-based CRN. Both algorithms do not involve 

additional network signaling over the wireless medium (the information 

exchange within CRN is performed over the high-speed IP links which 

enables the fast and reliable communication). First algorithm is simple, 
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has relatively short running time and is ideal for implementation in 

CRN with light and smooth traffic and/or when the processing 

capabilities of CRN are low and restrictive. Second algorithm uses 

future traffic predictions over the prediction window of the certain 

length for resource allocation. This algorithm is very effective in 

dealing with network congestions and therefore more suitable when the 

network traffic is heavy and/or bursty. However, because of the hire 

complexity and longer running time (than the first algorithm), it can be 

applied only if the processing capabilities of CRN are not restricted.  

3.5 Framework in Scenario 3  

In this work the network deployment Scenario 3 have been 

implemented based on the standard LTE architecture. Considered 

network model comprises a number of SPs offering the wireless 

services via a set of eNBs. Similar to the standard LTE system, 

considered network model operates on a slotted time basis with slot 

duration equal to 1 ms. Each eNB operates on a fixed licensed spectrum 

band and serves a number of primary users (PUs) and secondary users 

(SUs), randomly arriving to (and leaving) the network. PUs are the 

licensed network users who pay some prize for wireless services, and 

therefore get prioritized access to the spectrum bands within CRN. SUs 

are unlicensed network users who can access the wireless services for 

free, and therefore they are served on the best-effort (non-prioritized) 

basis. It is assumed that: 

1. one SU can connect to at most one eNB;  

2. the mean inter-arrival times of PUs and SUs (and the mean inter-

departure times of PUs and SUs) are much greater than the slot 

duration, which is reasonable because in real network the mean inter-

arrival times (and the mean inter-departure times) of the users are 

usually much greater than slot duration in LTE system; 

3. the spectrum bands of eNBs are non-overlapping. 

The goal of CRN is to serve the maximum number of SUs without 

violating the QoS of PUs. To achieve this goal, different algorithms 

have recently been proposed (see, for instance, [85, 89, 91, 92]). 

However, the conducted research has been very general, and did not 
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take into account the specifics of LTE radio interface (such as packet 

scheduling process and limited amount of control channels).  

Based on the fact that for most of the network applications (such as 

voice or video) the QoS is determined in terms of the packet end-to-end 

delay, we propose to formulate the problem of spectrum assignment for 

SUs as an optimization problem with certain delay constrains of PUs. 

Hence, to solve the problem, it is necessary to find the relation between 

the packet end-to-end delay and the number of users in eNB.  

According to [93], the packet end-to-end delay in LTE system 

comprises the following delay components: 

 packet transmission and buffering delays in user equipment (UE) and 

the eNB; 

 propagation delay between the UE and the eNB; 

 packet delay due to hybrid automatic repeat request (HARQ) 

retransmissions;  

 the uplink delay due to packet scheduling;  

 processing delays of eNB and the UE; 

 packet delay in core network.  

Because of the small subframe size (the subframe duration in LTE is 

equal Ts = 1 ms), the transmission and the buffering delay components 

are very small in LTE system (2 and 1 ms, respectively) [93]. 

Propagation delay depends on the distance between the UE and eNB, 

whereas delay in core network depends on the distance between the 

eNB and a server (in orders of 1 ms for if the distance does not exceed 

1000 km). Processing delays of eNB and the UE depend on processing 

capabilities of the equipment (typically around 5 ms) [93]. Delay due to 

HARQ retransmissions depends on the wireless channel quality 

(usually less than 4 ms). The largest delay component is delay due to 

uplink packet scheduling (in general, more than 8 ms) and constitutes 

the biggest part (≈36%) of the packet end-to-end delay. Unlike the 

other delay components, the scheduling delay depends on the number 

of users in eNB [93, 94].  

Although many studies have been devoted to performance of 

different scheduling strategies (e.g. [95 - 99]), resulting packet end-to-

end delay and loss for wireless users have been evaluated only by 

means of simulations, and no analytical verification of obtained results 

has been conducted. The average values of various delay components 

including delay due to packet scheduling have been given in [128]. 
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However, no proper mathematical analysis confirming the delay values 

have been presented. To fill this void, we obtain the mathematical 

relation between the number of users in eNBs and the scheduling delay, 

and use this relation to formulate the optimization problem for 

spectrum assignment in cognitive LTE network. The corresponding 

resource allocation algorithm assigns the spectrum to SUs subject to the 

delay constraints of PUs. The algorithm description and performance 

analysis will be presented in Chapter 8 of this thesis. 

3.6 Other Contributions 

Other contributions of this thesis include different techniques that 

can be used in all considered network deployment scenarios to increase 

the efficiency of resource allocation, and performance evaluation of 

LTE network for its further deployment in future wireless network 

infrastructure. 

Traffic Prediction Techniques for Resource Allocation 

In order to increase the efficiency of resource allocation, prevent 

potential network congestions, decrease packet delay and connection 

loss for the wireless users, we deploy traffic prediction in all considered 

network deployment scenarios. Considering the known difficulty of 

parameter estimation for time-varying wireless channels and 

heterogeneous nature of the wireless traffic, comprising large number 

of different network applications (such as data, voice or video), we 

propose to use recursive estimation techniques applied with time-series 

models for traffic prediction. Unlike off-line estimation methods, these 

techniques do not require a long observation history, highly adaptive 

and have modest memory requirements [106]. The corresponding paper 

analyzes the performance of different on-line recursive identifications 

methods applied with various time-series models for real and 

theoretical traffic traces.  

Priority Based Packet Transmission Technique 

In future wireless network the coordination and information 

exchange between all member sub-networks is carried via wired links 
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connecting the SM to the APs/BSs (Figure 1). Hence, no additional 

control signaling over the wireless medium is required for control and 

resource allocation in B3G. In this way we avoid the potential loss of 

control information usual for the wireless channels (where it is related 

to the poor signal quality, errors, limited number of control channels, 

etc.).  

To further increase the efficiency of resource allocation in all 

considered network deployment scenarios, we propose a priority based 

packet transmission technique which can be used to increase the 

capacity of the wired channels connecting SM to APs/BSs. In the 

corresponding paper we describe the technique, and show its 

implementation in infrastructure based network Wireless Local Area 

Network (WLAN) is described.  

Performance Analysis of LTE Network 

To implement existing wireless standards into the future wireless 

network infrastructure, it is essential to carry out a comprehensive 

performance analysis of these standard networks.  

While the capacity and coverage of IEEE802.11g (Wi-Fi) network 

has been widely investigated (see, for instance, [173 - 176]), the service 

performance of LTE network is still not fully explored due to the 

numerous design characteristics which have direct impact on QoS for 

the LTE users. Therefore, as part of the framework on implementation 

of LTE in B3G infrastructure, the following features of LTE air 

interface have been studied: 

 PHY layer channel modeling, including noise and interference 

models, log-distance path loss, shadow and multipath induced fading, 

physical layer transmission techniques (MCS, AMC); 

 MAC/RLC layer design, packet scheduling, ARQ/HARQ, buffer 

status reporting, etc.; 

 Application layer QoS for users. 

The corresponding papers study these LTE design characteristics 

based on their impact on capacity and QoS for VoIP users. The VoIP 

applications have been used for the performance analysis due to the 

following reasons: (i) they are expected to form a significant part in 

future wireless traffic [117]; (ii) they have the strictest delay 
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requirements compared to other network applications (VoIP can only 

tolerate packet end-to-end delay of up to 100 ms and packet loss of up 

to 1%) [116]. Thus, the ability of LTE to achieve good performance for 

voice applications will automatically guarantee that QoS for other user 

applications will be satisfied. 
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CHAPTER 1: Traffic Predictions Techniques for 

Cognitive Wireless Networks 

This chapter provides an overview and performance analysis of the 

various traffic prediction techniques for resource allocation in cognitive 

wireless network. The corresponding paper titled “A Predictive 

Network Resource Allocation Technique for Cognitive Wireless 

Networks” has been published in Proceedings of IEEE International 

Conference on Signal Processing and Communication Systems 

(ICSPCS), 2010. 

1 Introduction 

Accurate traffic prediction is crucial for resource allocation in future 

cognitive wireless networks. When radio resource occupancy is 

predicted accurately for each sub-network comprising the wireless 

network, the users can select an optimal channel, which will help to 

increase the QoS and minimize the connection loss probability [101].  

In future, the wireless services will be provided through 

heterogeneous networks rather than using a single standard network 

[102, 103], assuming that the network will comprise a large number of 

sub-networks belonging to different radio access technologies (RATs). 

Traffic modeling and prediction in heterogeneous network is very 

complicated, and requires a long observation of history. Besides, due to 

slow variation of the stochastic network parameters, a short-term 

forecasting might not perform well. For more accurate prediction, the 

parameters should be estimated on-line to track time-varying traffic 

characteristics. These features are common for recursive identification 

methods which can be applied together with non-real-time 

identification methods to make more accurate parameter estimation. 

The advantages of recursive methods can be summarized as follows: 

 they are central part of adaptive systems where the filtering action is 

based on the most recent model; 
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 they have relatively small (compare to off-line identification 

methods) requirements on primary memory; 

 they can be modified into real-time algorithms to track time-varying 

parameters; 

 they can be deployed for fault detection when the observed system 

has changed significantly. 

Further in this Chapter we describe the recursive parameter 

estimation methods for resource allocation, evaluate the performance of 

these methods for short-term and long-term traffic prediction based on 

“real-world” and theoretical traffic traces, and discuss the 

implementation of these methods in cognitive wireless networks. 

2 Recursive Techniques for Parameter Estimation 

Let y(t) be an observation of a random process Y at discrete time t. 

To generate prediction y(t+1), information about past events, called 

time-series data y(t-1), …, y(1), is collected.  

Many time-series models have been proposed for time-series 

analysis, such as autoregressive AR(na), moving average MA(nc), 

autoregressive moving average ARMA(na, nc) and autoregressive 

integrated moving average ARIMA (na, nb, nc), with na, nb, nc denoting 

the orders of the autoregressive, integrated and moving average parts, 

respectively [105].  

Recursive parameter estimation methods use the following general 

model [106]: 

)()()( tetty  θ
T   (1) 

where θ is a system parameter vector, and repressor (t) depends on the 

past data and the model structure.  

For the AR model [105]: 

TT
θ ) ... ( ,))( ... )1(()( 1 ana aantytyt   (2) 

For the MA model [105]: 

TT
θ ) ... ( ,))( ... )1(()( 1 cnc ccntetet   (3) 



 

 

 

  

 

 

57 

For the ARMA model [105]: 

TT
θ ) ...  ... ( ,))()...1( )( ... )1(()( 1 1 ca nnca ccaantetentytyt   (4) 

In the adaptive (real-time) identification methods, the parameter 

estimate )(ˆ tθ is computed in a recursive way by modification of a last 

obtained estimate )1(ˆ tθ  [106].  

There are four recursive methods, recursive least squares (RLS), 

recursive instrumental variable (RIV), pseudo-linear regression (PLR), 

and recursive prediction error method (RPEM) used for parameter 

estimation of different models. Two of them are PLR and RPEM, 

which can be applied to track parameters of AR, MA, and ARMA 

models. The algorithm for parameter estimation in these methods is 

given by [106]: 
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      (5) 

)()()( ttPtK ψ   (6) 

)1(ˆ)()()(  tttytε θ
T   (7) 

)()()1(ˆ)(ˆ ttKtt  θθ   (8) 

where λ is a forgetting factor to discount the measurements obtained 

previously; the smaller is the value of λ, the faster information is 

forgotten (usually λ is set in the range [0.95, 1]); 

P(t) can be found from Hessian approximation in Gauss-Newton 

algorithms R(t) using: 

)()( ),()( 1 ttRtRtRtP  
  (9) 

K(t) is the gain vector showing how much the value ε(t) will modify the 

different elements of θ(t); 

ε(t) is the prediction error of estimation given by: 

)(ˆ)()( tytytε    (10) 

ψ(t) - negative gradient of ε(t) with respect to θ(t) given by (5): 
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T
ψ ))( ... )1(   )(... )1(()( ca nttntytyt FFFF     (11) 

y
F
(t), ε

F
(t) - filtered data [106]. 

For the RPEM: 

)(ˆ ...)1()(ˆ)()( 1 antyctytctyty F
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a
  (12) 

)(ˆ ...)1()(ˆ)()(
1

nctcttctt F
nc

FF    (13) 

For the PLR: 

)()( tytyF    (14) 

)()( ttF     (15) 

i.e. filtering of RPEM is neglected [106]. 

The effect of initial values on performance of recursion has been 

widely discussed in literature (see, e.g. [106, 107]). Without any priori 

information it is common practice to set: 

Iθ ρP  )0( ,0)0(ˆ   (16) 

where ρ is a “big” number. Usually P is set in such as way so that the 

following relation satisfies. 
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where t0 is in the range [106]. 

3 Traffic Prediction Performance 

In this section the summary of traffic prediction performance is 

presented. More detailed performance evaluation of traffic prediction 

can be found in the corresponding paper.  

One theoretical (Poisson packet arrival process with constant and 

varying mean) and two experimental traffic traces (data packages LBL-

Conn-7 and DEC-Pkt1) have been used to observe the performance of 

different time-series models applied with recursive parameter 

estimation techniques in different network environments. The first 
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trace, LBL-Conn-7, contains the Transmission Control Protocol (TCP) 

traffic data between the Lawrence Berkeley Laboratory and the rest of 

the world in the format where timestamps have microsecond precision. 

After processing the trace for uplink connections only we get another 

trace where overall uplink data rate is calculated for each microsecond. 

Recursion starts immediately with the observation data. The second 

trace, DEC-Pkt1, contains the all wide-area traffic between Digital 

Equipment Corporation (DEC) and the rest of the world with 

cumulative traffic volume given for each microsecond. Last trace used 

in the performance evaluation is theoretical Poisson generated 

sequence. Even though the Poisson model has been reported to be 

unsuitable for Internet traffic modeling [108], Poisson generated traffic 

is still widely used in communication networks, and can be used as a 

good example of a process with non-zero mean and highly random 

(unpredictable) pattern (a Hurst parameter [109] of a Poisson process is 

equal H = 0.5).  

Performance of the traffic prediction has been evaluated using two 

metrics: normalized mean squared error (NMSE) and prediction error 

ratio (PER) given by: 

%100
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where y(t) is the actual value of data rate at time t; )(ˆ ty is predicted 

value of data rate at time t; )(ty is mean value of the data rate estimated 

at time t.  

The NMSE values for short-term (1-step ahead) and long-term (10-

step ahead) prediction obtained using PLR prediction techniques 

applied with AR, MA, ARMA and ARIMA time-series models after 

3000 recursion for different traces are given in Table 2. Both short-term 

and long-term predictions results show that best prediction performance 

is obtained using the AR model. Results also show that the MA model 

is unstable and fail to predict traffic values accurately.  

The appropriate order p = 1 from the family of AR(p) time-series 

models has been chosen by minimizing the Akaike Information 

Criterion (AIC) [110] given by: 
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where N – is the total number of recursions; VN - loss function. Figure 7 

shows AIC for trace LBL-Conn-7 after N = 3000 recursions. 

 

Fig. 7. AIC(N, p) after N = 3000 recursions for LBL-Conn-7 

To compare performance of different recursive estimation methods, 

we tracked the traces using PLR and RPEM applied with AR(1) time-

series model. Previous research reported that both techniques offer 

consistent performance, but behavior of the PLR in the transient phase 

might be better than that of the RPEM [106]. Our results confirm this 

observation – at the beginning of observations RPEM is less accurate 

than PLR (the accuracy of prediction estimated using PER metric 

during first 80 recursions and after 20000 recursions for one of the 

traces, DEC-Pkt1 are shown on Figures 8 and 9, respectively). Thus, 

RPEM takes more time than the PLR to estimate the parameters of the 

model. In our case the trace convergence delay for PLR method is 

approximately 10-15 recursions, whereas for RPEM is 50-60 

recursions. 
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Table 2. Values of NMSE for different traces with PLR  

Trace Model NMSE 

1-step-ahead prediction 10-step-ahead prediction 

LBL-Conn-7 

 

AR(1) 0.071397 0.151657 

MA(1) 0.637899 1.225446 

ARMA(1,1) 0.072005 0.146376 

ARIMA(0,1,1) 0.0741 - 

ARIMA(1,1,0) 0.0742 - 

ARIMA(1,1,1) 0.2977 - 

DEC-Pkt1 

 

AR(1) 4.81302*10-7 4.60807*10-6 

MA(1) 1.742629 3.44529 

ARMA(1,1) 4.89*10-7 1.75*10-6 

ARIMA(0,1,1) 4.81312*10-7 - 

ARIMA(1,1,0) 6.3*10-7 - 

ARIMA(1,1,1) 8.16*10-7 - 

Poisson 

 

AR(1) 1.578521 - 

MA(1) 3.576409 - 

ARMA(1,1) 1.035006 - 

ARIMA(0,1,1) 1.68656 - 

ARIMA(1,1,0) 1.471443 - 

ARIMA(1,1,1) 1.610663 - 
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Fig. 8. PER at the beginning of observation using PLR and RPEM with AR(1) for DEC-Pkt1 

 

Fig. 9. PER after 20000 recursions using PLR and RPEM with AR(1) for DEC-Pkt1 

Previous research has shown that drifting disturbances and non-zero 

means (such as in Poisson process) can well be treated by the family of 
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ARIMA time-series models [105]. ARIMA model is an ARMA model 

constrained to have the factor of y(t) – y(t-1) [105]. However, our 

observations contradict these results: Table 2 shows that the lowest 

value of NMSE for Poisson traffic prediction is achieved by 

ARMA(1,1) model, whereas AR(1) model is more accurate in 

predicting the peaks of Poisson distributed traffic traces as illustrated 

on Figure 10. This Figure shows that the curve of traffic prediction with 

ARMA time-series model is smoother than that with AR time-series 

model.  
 

 

Fig. 10. 50ms-long observation and traffic prediction for Poisson generated traffic sequence 

Results of this Chapter can be summarized as follows: 

 Both PLR and RPEM techniques can be used for traffic prediction 

with time-series models, although PLR technique does not use 

filtering which is applied in RPEM. Compare to RPEM, PLR 

converges more quickly, less complex and less memory-demanding, 

and therefore has higher possibility of implementation in cognitive 
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wireless networks where prediction should be produced in very short 

time with high accuracy. 

 Both AR and ARMA show relatively high (compared to other time-

series models) accuracy for “real-world” and theoretical traffic 

traces. AR(1) achieves the lowest NMSE for LBL-Conn-7 and DEC-

Pkt1 traces, ARMA(1,1) shows the lowest NMSE for Poisson 

generated traffic sequence.  

Based on these observations, it can be recommended to use AR(1) 

for traffic prediction in cognitive wireless network. AR(1) shows very 

high accuracy for “real-world” traffic traces. Although AR(1) has lower 

(than ARMA(1,1)) NMSE for Poisson generated traffic sequence, it is 

still very accurate in predicting the peaks of this random sequence 

(Figure 10). 
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CHAPTER 2: Traffic Prediction Based Packet 

Transmission Priority Technique in an Infrastructure 

Wireless Network 

In this chapter a priority based packet transmission techniques for an 

infrastructure based network Wireless Local Area Network (WLAN) is 

described. The corresponding algorithm derived in the paper can be 

used to support future wireless network infrastructure to improve the 

capacity and the QoS for the users under all network deployment 

Scenarios considered in this thesis. The corresponding paper has been 

published in Proceeding of IEEE Wireless Communications and 

Networking Conference (WCNC), 2011. 

1 Introduction 

With increasing demand for wireless data and multimedia services 

the role of infrastructure based WLAN is increasing. In an 

infrastructure based network the Quality of Service (QoS) in uplink and 

downlink channels is influenced by individual links which forms a 

multi-hop network to transmit traffic in both directions. Hence, the QoS 

for the network users is affected not only by the wireless link between 

respective Access Point (AP) and user terminal, but also by the radio 

access network (RAN) which connects the AP to other external 

networks (Figure 11) [111].  

In this Chapter we introduce a novel traffic prediction based packet 

transmission priority technique which can be used (together with any of 

existing dynamic spectrum access (DSA) algorithms) to improve the 

capacity and the QoS in future wireless networks. In this technique the 

recursive parameter estimation is used to predict the size of next job at 

the downlink Ethernet channels connecting APs to the gateway. The 

corresponding algorithm allocates low (“0”) or high (“1”) priority to the 

queues of Ethernet channels using the Shortest-Job-First (SJF) 

approach. Thus, the queues will the smallest arriving jobs are assigned 

the higher priority “1”.  
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Fig. 11. A typical infrastructure based WLAN architecture 

Two forms of the proposed algorithm have been considered. First 

form does not differentiate the jobs arriving to the same queue by their 

type of service (ToS). In the second form four priority levels are used to 

differentiate jobs arriving from different users: higher priorities are 

assigned to real-time applications, such as voice or video; lower 

priorities are assigned to data applications, such as http, ftp or email. 

Proposed algorithm has been simulated using OPNET platform [112], 

and compared with other commonly used priority allocation techniques. 

Further in the Chapter we present the packet transmission priority 

algorithm, show algorithm implementation in infrastructure based 

WLAN and provide simulative performance analysis of the algorithm.  

2 Packet Tansmission Priority Algorithm 

In this section we describe the traffic prediction based packet 

transmission priority algorithm for infrastructure based WLAN where 

the gateway connects multiple APs to external networks using Ethernet 

links (Figure 11). Here we present the example of algorithm 

implementation in the downlink direction. However, same approach 

can be applied in the uplink direction. 
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Proposed algorithm operates on a slotted-time basis, i.e. the time axis 

is partitioned into discrete mutually-disjoint time intervals, called time 

slots. The algorithm works by assigning different priorities to Ethernet 

channels in downlink direction based on predicted traffic load of 

respective APs. By default, all APs are assigned the lowest priority “0”. 

Within each time slot, APs transmit their instantaneous traffic load 

information to the Gateway (using Ethernet links). The traffic load 

information is represented by the size of medium access control (MAC) 

queue of respective AP (in packets) in the downlink direction.  

At the beginning of each time slot the gateway performs the 

following actions:  

 receives traffic load information from APs; 

 performs recursive prediction based on updated traffic load values (if 

for any reason the traffic load value hasn’t been received, then the 

last available data is used);  

 assigns priority to MAC queues of Ethernet channels connecting APs 

to the gateway. 

 The following approach is used to assign the priority to the 

downlink channels: if predicted traffic load of AP comprises less than 

half link data rate (in packets per slot), then a highest priority “1” is 

assigned to the respective channel. This approach is very similar to the 

approach used in Shortest-Job-First (SJF) scheduling algorithm used in 

computer operating systems. It has been shown that serving flows in 

order of job size using the approach “shorter flows served first” leads to 

significant reduction of response times for the flows of all lengths 

[113]. 

The SJF scheduling algorithm is probably optimal, because it yields 

the minimum average service time as well as high throughput. 

However, there is no way to know the size of the next job and hence, 

the SJF is not implemented at the level of short-term scheduling. For 

short term scheduling, it is necessary to arrange the flows according to 

the size of their jobs which is a challenging problem. In this paper we 

show a simple way to implement the SJF scheduling by predicting the 

size of next flow.  

To analyze performance of the SJF algorithm, consider M/M/1 queue 

with unlimited storage representing the MAC queue of each Ethernet 

channel connecting APs to the gateway. Let λ be the job arrival rate, B 
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be the job service time, and fB(x) be the probability density function 

(p.d.f.) of service time distribution of the queue. Then, the mean 

waiting time with SJF scheduling algorithm for the jobs with a service 

time of x ≤ E{B} ≤ x+dx  can be calculated using the expression [114]: 
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where ρ = λE{B} is the occupation rate (or utilization) of the queue; 

ρE{R} is the mean size of a job.  

The overall mean waiting time for all jobs in M/M/1 queue with SJF 

job scheduling is given by [114]:  
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Now let us compare mean waiting time in SJF with that in commonly 

used First-In-First-Out (FIFO) job scheduling algorithm. The overall 

mean waiting time for all jobs in M/M/1 queue with FIFO job 

scheduling is given by [114]:  








1
}{WE   (22) 

Figure 12 shows the values of E{W} in FIFO and SJF algorithms 

with different mean job size E{B}. Results demonstrate that SJF 

reduces waiting time for jobs of all sizes. More importantly, the 

difference between the waiting time in SJF and FIFO grows 

significantly when the channel utilization is high (ρ > 0.8).  
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Fig. 12. Mean waiting time for jobs in FIFO and SJF  

3 Algorithm Implementation 

As it has been mentioned in prediction section, to implement the 

proposed algorithm in the network, it is important to predict the size of 

next job at each queue accurately. In this work we use pseudo-linear 

regression (PLR) recursive identification technique applied with 

autoregressive (AR) time-series model. The technique and the time-

series model have been already described in Chapter 1. PLR has been 

chosen because of its relative simplicity, low memory requirements and 

shorter convergence delay compared to other recursive identification 

techniques (advantages of PLR for traffic predictions have been 

summarized in Chapter 1).  
To choose best model for the parameter estimation, we applied 

different time-series models with PLR for traffic prediction in 
simulation model of the network developed in OPNET platform [112]. 
The network comprises seven IEEE 802.11g APs connected to external 
network server via gateway using Ethernet 1000BaseX duplex links. 
Each AP serves a number of wireless users generating random traffic. 
Traffic mixes used in each AP during simulation are listed in Table 3. 
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Table 3. List of traffic sources used in different access points 

AP# Application Traffic Number of 

traffic sources 

Average data rate generated 

by traffic source (kbits/s) 

AP1 Voice 8 35 

AP2 Voice, Video  15 500 

AP3 Database, Ftp, Print, Remote Login 8 600 

AP4 Http, E-mail, Database, Ftp, Print, 

Remote Login, Voice, Video 

14 250 

AP5 Http, E-mail, Database, Ftp, Print, 

Remote Login 

5 1000 

AP6 Http, E-mail 2 2000 

AP7 Video 9 700 

 

Figures 13, 14 show results of traffic predictions made by 

autoregressive AR(p),  autoregressive integrated moving average 

ARIMA(p, d, q), autoregressive moving average ARMA(p, q) and 

moving average MA(q) models with p, d, q denoting the orders of the 

autoregressive, integrated and moving average parts, respectively. 

Prediction accuracy in simulation is measured using prediction error 

ratio PER (the expression for PER has already been provided in 

Chapter 1). Results show that MA time-series model is not suitable for 

traffic prediction in simulated network. ARMA model is not stable, and 

fails to predict the traffic in some APs (AP2 and AP7). AR and 

ARIMA models demonstrate very similar results with slight 

outperformance of AR model. 
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Fig. 13. Average PER in different APs 

 

Fig. 14. Average PER for different traffic loads 
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4 Algorithm Performance 

In this section the summary of algorithm performance is presented. 

More detailed performance evaluation of the proposed algorithm can be 

found in the corresponding paper.  

Two different variations (forms) of the packet transmission priority 

algorithm have been implemented: 

 First form of the algorithm, called MAC Priority Assignment 

scheme, uses only SJF approach for queue prioritization. Thus, 

depending on the size of the job waiting in MAC queues, different 

Ethernet channels are assigned low (“0”) or high (“1”) priority. The 

jobs are not prioritized by their type of service (ToS), i.e. within one 

queue the jobs initiated by voice, video or data users have same 

priority. 

 Second form of the algorithm, called ToS & MAC Priority 

Assignment scheme, utilizes combined SJF-ToS strategy for queue 

prioritization. Thus, different Ethernet channels are assigned low 

(“0”) or high (“1”) priority depending on the size of the job waiting 

in respective queue. Within one queue the jobs are prioritized by 

their ToS (ToS priority levels for jobs arriving from different traffic 

sources are listed in Table 4). 

Table 4. ToS priority for different traffic sources 

ToS Priority Application Traffic 

0 (best-effort) Http, Print, Remote Login 

1 (low) E-mail, Database, Ftp 

2 (medium) Video 

3 (high) Voice 

 

We compare the performance of two proposed forms of packet 

transmission priority algorithm with performance of conventional 

WLAN where all Ethernet channels have low priority, and performance 

of WLAN with ToS prioritization. Figures 15 – 20 demonstrate 



 

 

 

  

 

 

73 

performance of different schemes in simulation models. Results of 

simulation show that: 

 ToS Priority Assignment scheme improves QoS for certain types of 

users, but demontrate poor performance for non-prioritized users 

(with low and best-effort priority);  

 MAC Priority Assignment scheme decreases Ethernet delay, but does 

not improve the QoS of the end-users; 

 ToS & MAC Priority Assignment scheme very effective for all types 

of network applications: it decreases Ethernet delay and improves 

performance for prioritized and non-prioritized users. 

 

Fig. 15. Packet delay in Ethernet channels 

 

Fig. 16. Packet end-to-end delay for voice users 
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Fig. 17. Packet delay for email, ftp and database applications 
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CHAPTER 3: Performance Analysis of VoIP Services on 

the LTE Network 

This Chapter is based on contributions of two corresponding papers 

devoted to the analysis of VoIP services performance in LTE network: 

one published in Proceeding of Australasian Telecommunication 

Networks and Applications Conference (ATNAC), and another 

published in International Journal of Internet Protocol Technology 

(IJIPT) in 2012.  

Today a 3rd Generation Partnership Project Long Term Evolution 

(3GPP LTE) is considered to be the main standard for deployment in 

future wireless networks. Hence, performance analysis of LTE is a 

logical first step toward deployment of this network in B3G 

infrastructure. In this Chapter performance analysis of LTE is carried 

using VoIP user applications, which is mainly due to the fact that voice 

services are known to have the strictest (compared to other network 

applications) delay requirements: VoIP can only tolerate packet end-to-

end delay of up to 100 ms and packet loss of up to 1% [116]. Thus, the 

ability of LTE to achieve good performance for voice applications will 

automatically guarantee that QoS for other user applications will be 

satisfied. 

1 Introduction 

IP based voice services are already supported by the 3GPP High 

Speed Packet Access (HSPA) standard, but the importance of VoIP 

support is even higher for LTE, considered to be the main standard for 

deployment in future wireless networks. Evolved Universal Terrestrial 

Radio Access Network (E-UTRAN) is targeted to support a high 

number of VoIP users. The maximum VoIP capacity of LTE network 

has been reported by the outage limit defined in TR 25.814 document 

and updated in report R1-070674 [115].  

The uplink capacity of VoIP services in E-UTRAN have been 

investigated in [126, 127]. These studies took a closer look on the 

capacity and the coverage of LTE services depending on channel 

conditions based on physical (PHY) layer functionalities. A number of 
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studies have been devoted to the effect of semi-persistent packet (SMP) 

scheduling for voice users [116 - 120]. Various multiuser scheduling 

strategies (such as Fair Scheduling, Dynamic Subcarrier Assignment, 

and Adaptive Power Allocation) have been examined in the context of 

the Orthogonal Frequency Division Multiple Access (OFDMA) 

downlink in [121 - 125]. All mentioned works analysed the capacity 

and coverage of LTE only by means of physical layer simulations using 

physical layer QoS parameters (signal-to-interference-and-noice ratio 

(SINR), physical layer throughput, etc.). In other words, the effect of 

different scheduling strategies on the end-to-end QoS for VoIP users 

has not been considered.  

This Chapter has been written based on contributions of two 

corresponding works devoted to the analysis of VoIP service quality in 

LTE Frequency Division Duplex (FDD) network. In this Chapter we 

provide a comprehensive analysis of the Medium Access Control 

(MAC) layer functionalities and investigate the VoIP service capacity 

of LTE system using combined PHY/MAC layer simulation model. In 

particular, we compare the service performance of LTE system with 

fully dynamic (FD) and semi-persistent packet (SMP) scheduling 

techniques. We also observe the VoIP capacity of LTE network 

depending on channel bandwidth, Modulation and Coding Scheme 

(MCS), link adaptation and Hybrid Automatic Repeat reQuest 

(HARQ). Unlike the other works where the performance of VoIP 

services in LTE system is evaluated only by means of PHY layer QoS 

characteristics, in this Chapter we show the impact of scheduling 

techniques and PHY/MAC layer design parameters on the end-to-end 

QoS for voice users. 

The rest of the Chapter is organised as follows. First, we provide the 

background information on LTE radio interface and give a detailed 

description of LTE MAC layer. Then, we present the simulation model 

of the network and conclude the Chapter with some simulation results. 

2 LTE Radio Interface 

In this section some background information on the design, system 

architecture and radio interface of LTE FDD system is provided. This 

information will help to understand simulation results presented in this 

Chapter, and will be used as a reference further in the thesis. More 
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detailed description of LTE system radio interface can be found in 

[128].  

The LTE based Evolved Packet System (EPS) is an evolution of the 

3GPP system architecture where the vision of all-IP network is finally 

realized. EPS comprises the core network part, called Evolved Packet 

Core (EPC) and E-UTRAN radio access network, called LTE RAN or 

simply LTE (Figure 18). The functional split between EPC and LTE is 

illustrated on Figure 19. EPC provides access to external IP networks 

and performs a number of the core network related functions (QoS, 

security, mobility, etc) to terminals in active and idle state. The EPC 

can also be connected to other 3GPP (such as GERAN/UTRAN, GPRS 

and UMTS) and non-3GPP (such as WiMAX or cdma2000) networks. 

LTE performs all radio interface related functions to terminals in active 

state [129, 130]. 

As shown on Figure 18, EPC consists of one control-plane node, 

called a Mobility Management Entity (MME), and two user-plane 

nodes, called a serving gateway (S-GW) and a packet-data network 

gateway (P-GW). LTE comprises the base station, called enhanced 

NodeB (eNB) and mobile terminals, called user equipments (UEs). The 

eNBs are also connected to EPC by means of the S1 interface. The 

interface between eNBs is called the X2 interface. The eNBs are also 

connected to the EPC by means of the S1 interface [129, 130]. 
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Fig. 18. EPS architecture [129, 130] 
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Fig. 19. Functional split between EPC and LTE [130] 

The LTE user-plane protocol stack is shown on Figure 20. The 

physical layer or LTE Layer 1 (L1) is responsible mainly for coding, 

interleaving and modulation. The LTE Layer 2 (L2) is divided to three 

sublayers: the Packet Data Convergence Protocol (PDCP), the Radio 

Link Control (RLC) and the Medium Access Control (MAC) sublayers. 

The PDCP sublayer performs IP header compression and ciphering, 

supports lossless mobility in case of inter-eNB handovers, and provides 

integrity protection to higher layer control protocols. The RLC sublayer 

provides Automatic Repeat-reQuest (ARQ), data segmentation and 

concatenation (to minimize the protocol overheads). The MAC 

sublayer is responsible for Hybrid ARQ (HARQ), scheduling and 

random access (RA) [129, 130]. 
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Fig. 20. LTE user-plane protocol stack [129] 

The downlink transmission scheme of LTE system is based on 

conventional Orthogonal Frequency Division Mode (OFDM), where 

the available spectrum is divided into multiple subcarriers, which are 

modulated independently by a low rate date stream. The key features of 

OFDM are robustness against multipath fading and efficient receiver 

architecture. Besides, OFDMA supports multiple users on the available 

bandwidth, i.e. within one transmission time interval (TTI) subcarriers 

can be allocated to different users. The uplink transmission scheme of 

LTE system is based on Single-Carrier Frequency Division Multiple 

Access (SC-FDMA), which has better Peak-to-Average Power Ratio 

(PAPR) properties then OFDMA-based signals [129, 130].   

The frame structure of the LTE FDD mode is shown on Figure 21. 

According to this structure, one radio frame with duration Tf = 10 ms is 

divided into 10 equal subframes with duration Tsf = 1 ms. Each 

subframe consists of 2 basic time units (slots) with duration Ts = 0.5 ms 

[131]. A basic radio resource unit in the LTE standard is called a 

resource block (RB). One RB consists of 12 subcarries with a constant 

subcarrier spacing Δf = 15 kHz, and has a duration of 1 slot. The 

number of RBs, NRB, depends on the channel bandwidth. NRB for 

different bandwidth values is given in Table 5. The capacity of one RB 

depends on the Modulation and Coding Scheme (MCS) which 

determines the bit rate. The possible MCS values and their code bit 

rates are given in Table 6 [132, 133]. 
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Fig. 21. Frame structure in LTE FDD [131] 

Table 5. The number of RBs for different bandwidth [17] 

Channel bandwidth, MHz 1.4 3 5 10 15 20 

Number of resource blocks, NRB 6 15 25 50 75 100 

Table 6. MCS Description [131] 

MCS index Modulation Coding Rate MCS index Modulation Coding Rate 

0 - - 8 16QAM 0.478516 

1 QPSK 0.076172 9 16QAM 0.601563 

2 QPSK 0.117188 10 64QAM 0.455078 

3 QPSK 0.188477 11 64QAM 0.553711 

4 QPSK 0.300781 12 64QAM 0.650391 

5 QPSK 0.438477 13 64QAM 0.753906 

6 QPSK 0.587891 14 64QAM 0.852539 

7 16QAM 0.369141 15 64QAM 0.925781 

3 LTE MAC Layer Design 

3.1 HARQ and Link Adaptation 

As in any communication system, wireless LTE channels experience 

occasional transmission errors due to noise, interference, and/or fading. 

Since most of the RLC protocols are not prepared to deal with errors in 

packets, in LTE system the erroneous packets are dropped on MAC 
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sublayer without forwarding to higher layers. The MAC-based HARQ 

scheme is used for this purpose [130]. 

HARQ is a combination of Forward Error Correction (FEC) with 

ARQ. It enables to compensate for errors and to provide a better 

throughput performance. To detect the errors, the receiver node uses the 

Cyclic Redundancy Check (CRC). The standard generator polynomials 

for parity bits used in LTE system are given in [134]. If the receiver 

node detects erroneous packet, it will discard it, and will send Negative 

Acknowledgement (NACK) message to the packet sender node. The 

packet sender node will retransmit the packet in 8 ms after receiving the 

NACK message. This process will be repeated until the positive 

Acknowledgement (ACK) message is received or until the maximum 

retransmission limit will be reached. If the maximum retransmission 

limit for a packet is reached, and it still contains the errors, it will be 

dropped (packet loss due to channel errors) [129, 134].  

Three types of HARQ can be deployed in LTE system: HARQ Type 

I, HARQ with Chase Combining (CC) and HARQ with Incremental 

Redundancy (IR). In HARQ type I erroneous packets with error are 

simply retransmitted until the ACK message received, or maximum 

retransmission limit is reached. In CC after receiving a NACK 

message, a node retransmits the packet with the same data and parity 

bit pattern as the original packet. The receiver node combines 

erroneous packet with its retransmission, and sends the combined 

signal to the decoder. CC increases the accumulated received signal to 

noise ratio for each retransmission, but does not give any additional 

coding gain. In IR after receiving a NACK message, a node retransmits 

the punctured data and parity bit pattern different from the original 

packet. To detect the error, the receiver node combines the original 

(erroneous) packet with the retransmitted. Thus, IR results in a higher 

coding gain when compared to CC [134].  

For signaling, HARQ uses the following information: HARQ process 

number (currently, LTE supports up to 8 parallel HARQ processes are 

supported per UE); new data indicator (indicates whether the packet is 

a new transmission or a retransmission); the redundancy version (each 

redundancy version corresponds to a different set of parity bits); 

ACK/NACK [134].  

In LTE system, HARQ is combined with Adaptive Modulation and 

Coding (AMC) to maximize the data rate by adjusting transmission 
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parameters to the current channel conditions. AMC is one of the 

realizations of dynamic link adaptation. In AMC algorithm the 

appropriate MCS for packet transmissions is assigned periodically 

(within short fixed time interval usually equal 1 TTI) by eNB based on 

instantaneous channel conditions reported to eNB by UEs. The higher 

MCS values are allocated to the channels with good channel quality to 

achieve higher transmission rate and throughput. The lower MCS are 

assigned to the channels with poor channel quality to decline the 

transmission rate and, consequently, to ensure the transmission quality 

[134]. 

The method for choosing MCS can be expressed as follows. Based 

on the instantaneous radio channel conditions the signal-to-

interference-and-noise ratio (SINR) is calculated for each UE.  Assume 

that entire SNR range is partitioned into is expressed as [134]: 
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where SINR is the signal-to-interference-and-noise ratio of the channel 

between UE and eNB; γi is the SINR threshold corresponding to -10dB 

bit error ratio (BER) given by the Additive White Gaussian Noise 

(AWGN) curves for each MCS (the standard AWGN curves can be 

found for instance in [135]). The LTE standard defines m = 29 MCS 

values [131]. However, since a UE only have 4 bits feedback to 

indicate its preferred MCS, the eNB uses only the first 15 MCS levels 

from the list provided in [131]. 

3.2 Random Access Channel Procedure 

A Random Access Channel procedure (RACH) is used in LTE 

system for initial access, i.e. for originating, terminating or registration 

call in the network. The objective of RACH is to keep the transmissions 

from different UEs aligned with the frame timing at the eNB [129, 

133]. 
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Two types of a random access procedure are defined in LTE 

standard: contention-based RACH and non-contention-based RACH. 

The difference between these two types of RACH in that in contention-

based RACH there is a possibility for failure in case if overlapping 

random access (RA) preambles, whereas in non-contention-based 

RACH RA preambles are unique for each UE [129, 133].  

A contention-based RACH is illustrated on Figure 22. It is 

implemented in four steps: 

1. a UE randomly selects a 5-bit long RA preamble sequence from the 

set of sequences available in the cell, and transmits it on an RA 

channels;   

2. a eNB detects the preamble transmission, estimates the uplink 

transmission timing of the UE,  and responds by providing the UE 

with the correct timing-advance value to be used for subsequent 

transmissions and with a first grant for an uplink transmission; 

3. since it is possible that multiple UEs attempted RA with the same 

RA preamble sequence on the same RA channel, the UE provides its 

identity to the eNB with the first scheduled uplink transmission; 

4. the eNB resolves the (potential) contention by echoing the received 

UE identity back. The UE, seeing it own identity echoed back, 

concludes that RA was successful and proceeds with the time-

alignment [133].  

UE eNB

RA Preamble

RA Responce

Scheduled Transmission

Contention Resolution

1

3

4

2

 

Fig. 22. Contention-based RACH [133] 

A non-contention-based RACH is illustrated in Figure 23. It is 

implemented in three steps: 

1. the eNB assigns the 5-bit long RA preamble to a UE, and transmits it 

on an RA channels;   
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2. the UE transmits the assigned preamble to eNB; 

3. a eNB detects the preamble transmission, estimates the uplink 

transmission timing of the UE,  and responds by providing the UE 

with the correct timing-advance value to be used for subsequent 

transmissions and with a first grant for an uplink transmission [133]. 

UE eNB

RA Preamble Assignment

RA Preamble

RA Responce

1

3

2

 

Fig. 23. Non-contention-based RACH [133] 

3.3 Packet Scheduling Procedure 

The LTE standard is based on the packet scheduling (PS) domain 

where the packets are normally scheduled using the FD packet 

scheduler, which allocates available resources to UEs separately for 

every packet transmission. Resources are allocated to UEs for uplink 

and downlink data transmission in terms of RBs. Thus, one UE can be 

allocated only the integer number of RBs in frequency domain, and 

these RBs do not have to be adjacent to each other. Resource allocation 

(scheduling) is usually performed periodically within a fixed time 

interval (scheduling period) with minimal duration 1 TTI. The 

scheduling is done by L2 packet scheduler in the eNB both for uplink 

and downlink transmissions. Depending on the implementation, the 

packet scheduling can be based on the quality of service (QoS) 

requirements, instantaneous channel conditions, fairness, etc. Besides, 

the scheduler has to ensure that HARQ retransmissions are performed 

on a timely basis (in LTE system a packet retransmission should be 

send in exactly 8 ms after receiving a NACK message) [129, 132, 133]. 

After resource allocation, the user data are carried by the PUSCH in 

uplink direction and Physical Downlink Shared Channel PDSCH in 

downlink direction. The scheduling decisions are carried by the 

PUCCH and PDCCH in uplink and downlink directions, respectively 

[131].  
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Being very flexible a fully dynamic scheduling is ideal for bursty, 

infrequent and bandwidth consuming data transmissions (e.g. web 

surfing, video streaming, emails), but less suited for real time streaming 

applications like voice. In FD, the average number of control channels 

per TTI (the number of control channels #CCH), can be estimated using 

[118]: 

)/)1(/(# 21 IInCCH     (24) 

where ν is the Voice Activity Factor (VAF); n is the total number of 

voice users; λ is the average number of transmissions; I1 and I2 are the 

inter-arrival times of voice packets and SID packets, respectively. For 

5MHz bandwidth and 100 voice users using G.723.1(12.2 kbps) codec 

the number of control channels estimated according to (24) will be 

equal #CCH = 4.17 (a typical assumption is 6-10 downlink control 

channels per TTI for uplink traffic in the 5 MHz bandwidth [136]).   

To reduce the amount of L1/L2 control signaling, a so-called Semi-

Persistent Scheduling (SMP) has been proposed for the VoIP traffic 

[133].  The SMP persistent scheduling is used for initial transmissions, 

and dynamic scheduling for retransmissions. For initial transmissions, 

Radio Resource Control (RRC) signaling is used to allocate the PRBs 

and transmission parameters including the MCS to voice users at the 

beginning of an active or an inactive period (signaling for inactive 

period is necessary to notify the PS, that UE does not need any 

resources to keep effective channel utilization). The semi-persistent 

allocation technique is valid until the UE receives another control 

channel indication, which happens when the channel conditions have 

changed. The allocations for initial transmissions are sent on the 

PDCCH and PUCCH. Retransmissions are scheduled dynamically 

using the L1/L2 control channels.  

The scheduling priority order for SMP PS in frequency domain can 

be described as follows:  

1. reserve resources for HARQ retransmissions;  

2. schedule semi-persistent UEs on pre-assigned resources; 

3. schedule dynamic UEs; 

4. schedule HARQ transmissions on the reserved resources [133].  

Note, that since available retransmission resources in SMP are few 

compared to the FD case, the dynamic retransmission is very important 
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for the SMP, because it allows the scheduler to utilize any unused 

PRBs to increase the amount of retransmission opportunities [118, 

113].  

Assuming that initial transmissions are scheduled using SMP, the 

average number of control channels necessary per TTI can be estimated 

according to [118]: 

)/)1(/()1(# 21 IInCCH    (25) 

For 5MHz bandwidth and 100 voice users using G.723.1(12.2 kbps) 

codec the number of control channels estimated according to (25) will 

be equal , #CCH = 0.69, i.e. approximately 17% of that number in case 

of FD PS. 

3.4 Buffer Status Report Procedure 

A Buffer Status Report (BSR) is used to provide the network with 

information about the amount of data in the uplink buffer of a UE. For 

this, BSR generates a BSR MAC Control Element, which includes 

information about the amount of data available for transmission in the 

RLC and PDCP layers, when being triggered. The BSR shall be 

triggered when the uplink data becomes available for transmission and 

the data belongs to a logical channel with a higher priority than those 

for which data already existed in the UE transmission buffer, in this 

case the BSR is referred to as “Regular BSR.” When the BSR is 

triggered but there is no allocated resource for a new transmission, the 

UE would then trigger SR procedure for requesting uplink resources, 

i.e. Uplink Shared Channel (UL-SCH) resources, to send the BSR 

MAC Control Element. Only the Regular BSR can trigger the SR 

procedure when the UE has no UL resources allocated for a new 

transmission for a current TTI [133].  

When a BSR MAC Control Element is transmitted, the network may 

not be able to successfully receive the BSR MAC Control Element, and 

thus would not allocate any uplink transmission resources to the UE. In 

this case, if the reason for triggering the BSR is no longer satisfied, 

such as no higher priority data becomes available for transmission. For 

example, the UE would have no uplink transmission resources for use 

and enter into a “deadlock” situation. In this case the BSR 

retransmission mechanism will be applied, which utilizes the 
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Retransmission BSR Timer to enhance the reliability of BSR 

transmission. The UE starts the timer when a BSR MAC control 

element is generated, and restarts (if running) the timer when UL 

resources allocated for new transmission are received, e.g. on the 

PDCCH or in a Random Access Response, which indicates the BSR 

MAC Control Element is successfully received by the network. When 

the timer expires and the UE has data available for transmission in the 

buffer, the UE shall trigger a BSR, in which case the BSR is also 

referred to as “Regular BSR” [133].  

4 Simulation Model of LTE Network 

We consider a basic LTE FDD simulation model illustrated on 

Figure 24. The model consists of one eNB, one EPC and a 

communication server, connected to each other using IP-based links 

with 1Gbit/s data rate. The eNB serves a number of fixed VoIP users 

randomly positioned in the system area with a 1000m radius.  
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Fig. 24. Simulation model of the network 
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The radio channel between eNB and each UE is calculated according 

to the path loss model provided in the ITU-T Recommendation M.1225 

[137] for the outdoor to indoor and pedestrian test environments. Log-

normal shadow fading is assumed with a standard deviation of 10 dB 

for outdoor users and 12 dB for indoor users. The Spatial Channel 

Model (SCM) is used for multipath fading. Transmitter/Receiver 

antenna gains are equal 10dBi for the pedestrian environment and 2 dBi 

for the indoor environment. Receiver noise figure and thermal noise 

density are equal 5dB and -174 dBm/Hz, respectively. The average 

building penetration loss is 12 dB with a standard deviation of 8 dB. 

Other losses (in cables, connectors, combiners) are assumed to be equal 

2dB.   

In all simulations a de-coupled Round Robin (RR) packet scheduler 

in the time domain and Proportional Fair (PF) throughput packet 

scheduler in the frequency domain (described in details in [132]) is 

utilized. The structure of the scheduler is illustrated on Figure 25. In 

time domain RR scheduler assigns the priority metrics to all users 

connected to eNB based on their average and predicted throughput, and 

appends the users with the largest priority metric to a so-called 

Scheduling Candidate Set (SCS). SCS is then passed to the frequency 

domain PF packet scheduler. PF allocates RBs to the users in SCS 

(starting from the user with the highest priory metric) based on their 

average and predicted throughput. Described scheduling procedure 

provides flexibility (since both domains can be configured separately), 

reduces the overall complexity of scheduling algorithm, and insures 

that available resources are shared equally among the users when they 

have same load and channel conditions [132].  
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Fig. 25. The structure of the decoupled packet scheduler [132] 

Other simulation parameters of the network model are summarized in 

Table 7. In all simulations, a non-contention-base RACH is deployed. 
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Table 7. Common Simulation Parameters 

Parameter Value 

PHY profile: Operation mode FDD 

 Cyclic Prefix Type Normal (7 symb/slot) 

 EPC Bearer Definitions 348kbit/s (Non-GBR) 

 Carrier frequency 2GHz 

 Subcarrier spacing 15kHz 

BSR Parameters: Periodic Timer 5 subframes 

 Retransmission Timer 2560 subframes 

L1/L2 Parameters: Reserved Size 2 RBs 

 Allocation Periodicity 1 TTI 

HARQ Parameters: Max No of Retransmissions 3 

 HARQ Retransmission Timer 8 TTI 

 Max No of HARQ processes 8 per UE 

 

The VoIP services model deployed in simulation complies with the 

requirements of the real-time delivery session initiation and session 

description protocols (SIP/SDP) provided in [138, 139]. During each 

session, a VoIP user might be either in active (talk-spurts) or inactive 

(silent) state. The duration of each state is exponentially distributed 

with burst lengths of 0.65s and 0.352s, respectively.  

Two voice coders are considered: G.711 (64 Kbps) and G.723.1 

(12.2 Kbps). The codec payload size is equal 160 bytes for G.711 and 

40 bytes for G.723.1 coder. The payload generation intervals of G.711 

and G.723 coders are 20ms and 30ms, respectively. The Silence 

Insertion Descriptor (SID) packet inter-arrival time is 160ms for both 

coders. For bandwidth calculations it is considered that packet payload 

is typically adding 6 bytes for the L2 header, and 2 bytes for the 

RTP/UDP/IP compressed header [140]. Discontinuous Transmission, 

Voice Activity Detection and Comfort Noise Generation are also 

applied.  
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Simulation scenarios used for performance analysis of the network 

are listed in Table 8. In scenarios with ideal channel conditions, no link 

adaptation and no HARQ are applied (since they are unnecessary due to 

absence of errors). First, we compare the capacity of a LTE network 

using two voice coders. For all other simulations the G.723.1 coder has 

been deployed. We also simulate a scenario with semi-persistent 

scheduling in order to observe its influence on the VoIP capacity.  

Table 8. Simulation Scenarios 

No Simulation Description 

Channel Link Adaptation HARQ Packet Scheduling 

1. 5MHz ideal MCS = 9 No HARQ FD 

2. 5MHz ideal MCS = 15 No HARQ FD 

3. 10MHz ideal MCS = 9 No HARQ FD 

4. 5MHz ideal MCS = 9 No HARQ SMP 

5. 5MHz real AMC HARQ Type I FD 

6. 5MHz real AMC HARQ with CC FD 

 

In scenarios with real channel conditions, the link adaptation (AMC) 

and HARQ are applied. Based on the instantaneous radio channel 

conditions the SINR is calculated for each UE. The link adaptation 

algorithm maximizes the spectral efficiency (SE) by choosing the best 

MCS for a given SINR (detailed description of AMC algorithm was 

provided in III.A). Two types of HARQ are simulated: in HARQ type I 

packets with error are simply retransmitted until the errorless packets 

received, or retransmission limit (up to 3 retransmissions) is reached. In 

other scenario, HARQ with chase combining is applied (description of 

HARQ CC were given in III.A). In this mechanism we deploy 8 

parallel stop-and-wait processes per UE in uplink and downlink 

directions.  
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5 Simulation Results 

5.1 VoIP Service Performance in Ideal Channel Conditions 

In this subsection performance of VoIP services in ideal channel 

conditions is briefly summarized. More comprehensive performance 

analysis can be found in the corresponding papers. In all scenarios with 

ideal channel conditions no AMC and no HARQ applied since they are 

unnecessary due to the absence of channel errors.  

First, we compare the capacity of an LTE FDD network with 5MHz 

bandwidth and MCS = 9 for voice users using G.711 and G.723.1 

coders. Figure 26 shows the mean MAC-layer uplink and downlink 

packet delay in LTE radio interface; Figure 27 shows the mean uplink 

and downlink packet loss; Figure 28 shows the mean application layer 

packet end-to-end delay (comprising the network, codec and play out 

delays) for VoIP users. 

Results show that the lower bit rate codec rate (G.723.1) provides 

much higher capacity than the higher codec rate (G.711). According to 

[115], the satisfactory level of service for VoIP users is achieved when 

packet end-to-end delay is less than 100ms, and packet loss is less than 

2%). With defined QoS levels the network can support not more than 

30 users using G.711 coder, and up to 80-90 users using G723.1 coder. 

Results also show, that the downlink offers much higher capacity than 

uplink because of the following reasons:  

1. the downlink spectral efficiency of Multiple-Input-Multiple-Output 

(MIMO) OFDMA is higher than the uplink spectral efficiency of SC-

FDMA [14];  

2. the downlink delay comprises only the buffering, transmission, 

queuing and processing delay components, while in the uplink the 

delay comprises not only buffering, transmission, queuing and 

processing delay components, but also the delay due to uplink packet 

scheduling [14]. 
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Fig. 26. Mean MAC-layer packet delay in UL and DL channels 

 

Fig. 27. Mean packet loss in UL and DL channels 

 

Fig. 28. Mean application-layer packet end-to-end delay 

The maximal achievable bit rate in LTE network depends on the 

channel bandwidth and MCS. Figures 29 - 31 show the capacity of LTE 

network for VoIP users using G.723.1 coder in first three scenarios (i.e. 

for 5MHz&MCS9, 5MHz&MCS15 and 10MHz&MCS9). Results 
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show that the capacity of LTE network for VoIP users is the highest in 

scenario 3 (10MHz&MCS9), and the lower in scenario 1 

(5MHz&MCS9). Such results correspond to the theoretical channel 

capacity which can be estimated using the modified Shannon Capacity 

expression given by [142]: 

)1(log 2

SE

BW

SNR
BR


    (26) 

where R is the data rate, B is the bandwidth, SNR is a signal/noise ratio, 

ηBW and ηSE are the bandwidth efficiency and the spectral efficiency of 

the LTE network model respectively.  

 

Fig. 29. Mean MAC-layer packet delay in UL and DL channels 

 

Fig. 30. Mean packet loss in UL and DL channels 
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Fig. 31. Mean application-layer packet end-to-end delay 

In (26) the bandwidth efficiency of a LTE network is reduced by 

several other issues including the Adjacent Channel Leakage Ratio 

(ACLR), Cyclic Prefix, Reference Signals, Synchronization Signal, 

Random Access Preamble and L1/L2 Control Channel overheads. Due 

to the requirements of the ACLR, the bandwidth efficiency of 0.9 is for 

a single antenna configuration considered in simulations. The other 

overheads reduce the downlink efficiency up to 0.62, and 0.78 for the 

uplink channel [143].  

Full SNR efficiency is not possible in LTE due to limited code block 

length which depends on the link adaptation and scheduling. There are 

also restrictions to the maximum spectral efficiency from the supported 

values of MCS. In other words, the SNR efficiency is much more 

complicated to analytically compute than the bandwidth efficiency. 

Therefore, in this paper the value of ηSE is extracted by using curve 

fitting to link-level simulation results provided in [144], which gives us 

ηSE = 0.88 for uplink and downlink directions.  

With defined QoS limits the experimental VoIP capacity for scenario 

1 is 80 users, for scenario 2 - 100 users, and for scenario 3 - 140 users, 

which corresponds to the values of theoretical channel capacity in MHz 

obtained from expression (26).  

The effect of packet scheduling procedure (FD or SMP) on QoS for 

VoIP users using G.723.1 coder is illustrated on Figures 32 - 34. 

Results show that SMP can increase the capacity of LTE network for 

voice users. However, this capacity improvement is rather small and 

incomparable with that when the bandwidth of the network is increased 

to 10 MHz. 
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Fig. 32. Mean MAC-layer packet delay in UL and DL channels 

 

Fig. 33. Mean packet loss in UL and DL channels 

 

Fig. 34. Mean application-layer packet end-to-end delay 

5.2 VoIP Service Performance in Real Channel Conditions 

In this subsection performance of LTE network for VoIP users in real 

channel conditions is briefly described.  
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Figures 35 and 36 illustrate performance of the network in scenarios 

5 and 6 (i.e. when different types of HARQ are applied). All results are 

given for voice users using G.723.1 coder. Graphs show that HARQ 

with CC decreases the packet error ratio (PER) by accumulating 

received signal (detailed description of different types of HARQ was 

provided in III.A). This means that HARQ with CC needs smaller 

number of retransmissions to successfully decode the channel errors 

than HARQ Type I. As a result, the mean packet delay and loss values 

achieved by HARQ with CC are smaller than those in HARQ Type I 

(since smaller amount of time is required for retransmissions, and less 

packets are lost due to channel errors). 

 

Fig. 35. Mean application-layer packet end-to-end delay and total (UL and DL) packet delay 

 

Fig. 36. Mean packet error ratio 

To finalize, we provide the summary of LTE network performance 

for VoIP users below. 
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1. The VoIP capacity of LTE network can be increased by significant 

margin if the low bit rate codec, such as G.723.1, is used for VoIP 

services. 

2. The SMP packet scheduling technique which has been proposed to 

reduce delay for voice services offers only a slight QoS advantages 

when compared to FD technique. 

3. In contrast to the idea that ARQ techniques in general are not 

suitable for voice services, HARQ with CC gives substantial 

improvement in terms of packet error ratio, mean packet delay and 

loss when compared to simple HARQ Type I technique. 
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CHAPTER 4: Prediction Based Bandwidth Allocation for 

Cognitive LTE Network 

In this chapter a resource allocation technique for LTE-based CRN in 

Scenario 1 is presented. Description of the network deployment 

scenario has already been provided in Overview of this thesis. Here we 

outline the algorithm for resource allocation, show its implementation 

in LTE-based network infrastructure and analyze the algorithm 

performance based on results of simulations in OPNET environment 

[112]. The corresponding paper is published in Proceeding of IEEE 

Wireless Communications and Networking Conference (WCNC), 

2013. 

1 Introduction 

In 2004, a special IEEE 802.22 working group was set to develop a 

first worldwide wireless standard for cognitive radio (CR). It was 

proposed that the fixed wireless access will be provided by a Wireless 

Regional Area Network (WRAN) comprising a number of service 

providers (SPs) with their base stations. Unlike traditional wireless 

networks, where each SP operates on its fixed licensed bandwidth, in 

IEEE802.22 architecture SPs share the total available spectrum among 

each other according to some flexible spectrum usage policy to 

maximize the QoS for their users [51, 52].   

According to the standard, the physical layer of IEEE802.22 network 

will use OFDMA technology, while the MAC payer will be based on 

cognitive radio. The exact algorithm for dynamic spectrum access 

(DSA) is not specified: the choice here is left for the network 

developers [52]. Consequently, a number of centralized and distributed 

resource allocation strategies have been proposed for IEEE802.22 

network architecture (see, e.g. [145 - 153]). Most of these strategies are 

very effective in homogeneous traffic environment, but not very 

efficient in case of heterogeneous network applications, which is 

mainly due to the fact that all network users are characterized by 

similar utility functions (for instance, user throughput or service rate) 

[153]. 
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To deal with heterogeneous network applications, we propose to 

apply the concept used in optimal flow and congestion control (OFC) to 

resource allocation in IEEE802.22 CRN. Recall, that in traditional OFC 

the network congestions are prevented by assigning the resources based 

on speed of load increase in the bottleneck nodes [65]. Considering, 

that the congestions in LTE network usually occur in eNBs (the growth 

of the queues in user terminals is neglectably small and usually do not 

lead to significant increase of delay or loss in the network), we suggest 

to allocate the network resources based on the speed on load increase in 

eNBs using the appropriate load control indicators. Unlike most of the 

OFC algorithms where the users are described by simple binary load 

indicators (for congested and not congested nodes) [65, 154], we use 

the modified load indicators (MLI) described by more complex 

functions depending on queue size and the loss in the nodes. To further 

increase the algorithm efficiency, we allocate the resources based on 

predicted load and channel state information, which may help to 

prevent the potential growth of delay and loss for the users. 

The rest of the Chapter is organized as follows. In Section 2 we 

outline the algorithm for resource allocation. In Section 3 we show how 

the OFC approach can be applied for resource allocation in LTE-based 

CRN, and present the weighted utility maximization framework as a 

justification for used of the algorithm. In Section 4 we illustrate the 

performance of the proposed algorithm based on simulation model 

developed using OPNET platform [112]. 

2 Resource Allocation Algorithm 

Consider the network model which comprises n eNBs sharing the 

total available bandwidth C using the network resource manager 

(NRM) located in LTE Evolved Packet Core (EPC). NRM is connected 

to eNBs via high speed Internet Protocol (IP) based links to enable fast 

transmission of data and control information.  

The assumptions of the network model are summarized below: 

1. uplink and downlink buffers of eNBs have known finite capacities 

denoted by Q
UL

max and Q
DL

max;  
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2. parameter monitoring of parameters, bandwidth allocation and 

prediction can be performed only discontinuously within fixed time 

intervals (called monitoring intervals);  

3. the length of the monitoring interval, the length of buffers and the 

amount of data arrived at the buffers during each monitoring interval 

are known;  

4. data collected and predicted separately for uplink and downlink 

directions.   

Proposed prediction based resource allocation (PRA) algorithm 

operates on a discrete-time basis, i.e. the time axis in the algorithm is 

partitioned into mutually disjoint intervals {[tΔt, (t+1)Δt]}, with t 

denoting the index of time interval. Prediction and resource allocation 

approach is synchronized with these intervals, i.e. Δt is equal to the 

duration of monitoring interval. At the beginning of each interval the 

eNBs are allocated some bandwidth based on prediction made from the 

data collected in the past.  

We shall use the following notation:  

n– the number of nodes (eNBs) in the network;  

t – integer valued index of a monitoring interval;  

xi – bandwidth (in MHz) allocated to eNB i at (t + 1)
th

 monitoring 

interval;  

Qi
UL

(t), Qi
DL

(t), Qi (t) –length of the queue (in bits) at eNB i at t
th

 

monitoring interval on the uplink, the downlink and the unspecified 

(general) channels, respectively;  

Xi
UL

(t), Xi
DL

(t), Xi(t) – the number of bits served at eNB i at t
th

 

monitoring interval on the uplink, the downlink and the unspecified 

(general) channels, respectively;  

Li
UL

(t), Li
DL

(t), Li(t) – the number of bits arrived to eNB i at t
th

 

monitoring interval on the uplink, the downlink and the unspecified 

(general) channels, respectively;  

Di
UL

(t), Di
DL

(t), Di(t) – the number of bits dropped at eNB i at t
th

 

monitoring interval on the uplink, the downlink and the unspecified 

(general) channels, respectively. 

Proposed PRA algorithm is summarized below: 

1. Input: The eNBs monitor 
n

i

DL

i

UL

i tQtQ 1)}(),({  , 
n

i

DL

i

UL

i tLtL 1)}(),({   

and send this information to the NRM using IP links. 
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2. Prediction: Using the input information collected up to t
th

 

monitoring interval, NRM computes the predictions 
n

i

DL

i

UL

i tLtL 1)}1(ˆ),1(ˆ{   using PLR parameter estimation applied 

with AR(1) time-series model (detailed description of PLR technique 

and AR model has already been provided in Chapter 1). 

3. Weight generation: Based on the n

i

DL

i

UL

i tLtL 1)}1(ˆ),1(ˆ{   and 
n

i

DL

i

UL

i tQtQ 1)}(),({  , NRM generates the weights  

ni

tQ

SE

tx
tLtQ

tQ

SE

tx
tLtQ

DL

i

DL

iDL

i

DL

i

UL

i

UL

iUL

i

UL

i

i
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)1(ˆ)(



 (27) 

where [x]
+
 denotes max(0, x). These weights are used later in 

weighted proportional fairness problem. The justification behind 

using the expression (27) will be given in the next section. 

4. Optimization: Using the generated weights 
n

ii 1}{  , the NRM 

calculates the bandwidth  
n

iix 1}{   that will be assigned to each eNB in 

the next (t+1)
th

 monitoring interval based on the weighted 

proportional fairness criterion, and transmit these values to 

corresponding eNBs via IP links. 

5. Output: Received bandwidth allocation values 
n

iix 1}{   are assigned 

to the physical interfaces of the corresponding eNBs at the beginning 

of the (t + 1)
th

 monitoring interval. 

Since the sizes of the node buffers in the network model are limited, 

the length of node buffer Q(t) is a nonlinear function of t, which can be 

readily verified from the Lindley’s equation [80] for a finite buffer 

length given by 

  
 







)1()1()1()(             

)1()1()(,min)1( max

tDtXtLtQ

tXtLtQQtQ
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where Qmax is the maximal buffer size of the queue. This step makes 

Q(t) inappropriate to use in the linear prediction. Therefore, instead of 

predicting the nonlinear parameter Q(t), we predict the traffic arrived to 

each eNB, L(t). 

3 OFC for Resource Allocation in PRA Algorithm 

In this section we show how OFC approach can be applied for 

resource allocation in LTE-based CRN. To prevent congestion in the 

bottleneck nodes, OFC algorithm: (i) identifies the nodes with 

increasing (decreasing) load (buffer size); (ii) increase (decrease) the 

channel utilization in the nodes with decreasing (increasing) load [65].  

In LTE network, the congestions usually occur in the queues at 

eNBs, where the arrival traffic may be very high, whereas the size of 

the queues is limited. Hence, to avoid the congestions in CRN, PRA 

algorithm should: (i) identify eNBs with increasing (decreasing) queue 

size; (ii) increase (decrease) service rates of eNBs with increasing 

(decreasing) queue size. The corresponding bandwidth allocation 

problem can be formulated using, for instance, the weighted 

proportional fairness criterion [66], and applying it in the way 

described below. 

Consider a network model comprising n eNBs, each characterized by 

some positive weight (load indicator) ωi, and sharing the total available 

bandwidth C. Let xi be the bandwidth allocated to eNB i at (t + 1)
th

 

monitoring interval. Then a weight proportionally fair bandwidth 

allocation should solve the optimization problem given by:  

 Cxxg

nixxg

xxf

n

i

in

ii

n

i

ii

















1

1

1

0:)(                      

1     ,0:)(       subject to

log)(       maximize 

 (29) 

The problem (29) has a unique optimum, because its objective is 

represented by increasing, strictly concave, and continuously 

differentiable function over a convex feasibility region. The optimal 
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solution  Tnxxx **

1

* ,..., can be found from the necessary and sufficient 

Karush–Kuhn–Tucker (KKT) conditions [155] given by: 

11   ,0   ,0)(

1   ,0)(   ,0)(

0)( )(

***

*

1

*

1

1

***















niμxgμ

nixgxg

xgμxf

iii

ni

n

i

ii

 (30) 

where:  ...)( ,...)(

T

1

T

1




































n

ii
i

n x

g

x

g
xg

x

f

x

f
xf , µi are non-

negative Lagrange multipliers, associated with i
th

 constraint in (29); µi
*
 

are the values of the Lagrange multipliers associated the optimal 

stationary point.  

Using (29), conditions in (30) are equivalent to the following system 

of equations: 
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*

*
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*
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  (31) 

From the optimality conditions (31) we get: 

ni
μμ

x
in

i
i 






1   , 
**

1

* 
  (32)

 Using (32) in complementary slackness conditions of (31) gives: 

0)(   ,1   ,0 **

1

1
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Now, if µn+1
*
 = 0 then (32) implies: .1 , 0

*

* ni
μ

x
i

i
i 





 

However, (31) means µi
*
 ≥ 0 and ωi ≥ 0, 1 ≤ i ≤ n by construction. 

Hence, if µn+1
*
 = 0, this contradicts (31). Thus, we conclude that µn+1

*
 

> 0, using which in (33) gives:  

)( **

1

1

in

n

i

i μμC  



   (34) 

Putting (34) into (32) gives us: 

niCx
n

j

jii  


1   , 
1

*    (35) 

which clearly satisfies the feasibility constraints of (31) (because of the 

non-negativity of weight ωi). The Lagrange multipliers corresponding 

to constraints in (29) are equal: 
















  1   ,0

1   ,0

 

1

*

niC

ni

μ
n

j

j
i 

  (36) 

After the solution of (29) has been found, we are ready to derive an 

appropriate load indicator, which can be used to detect the nodes with 

increasing (decreasing) load.  

Recall, that in traditional OFC the load in different nodes is 

controlled based on assumption that in uncongested node the length of 

the buffer is non-increasing, i.e. 1 ,
)(

)1(





i

i

i

i
tQ

tQ
 , whereas in 

congested node the length of the buffer experiences a multiplicative 

increase, 1 ,
)(

)1(





i

i

i

i
tQ

tQ
  [65].  

It is rather straightforward to verify that γi can only be applied for the 

nodes with infinite buffers. Applying the same algorithm in the nodes 

with finite buffer size might fail to detect the overload situation.  

Indeed, if at some point the buffer of a eNB reaches its maximum 

value Qmax, and does not decrease over time, then γi will remain to be 

equal 1, indicating that the node is uncongested. Therefore, in order to 
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prevent the buffer overflows, we propose to modify the load control 

indicator γi used in [65] by adding the amount of data dropped to the 

numerator as shown in: 

)(

)1()1(mod

tQ

tDtQ

i

ii
i


   (37) 

Combining (28) and (37), we obtain the following new expression 

for uplink and downlink modified load indicators γi
ULmod

 and γi
DLmod

 

which can be used to detect the congestion in the nodes with limited 

buffer capacity: 
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 (38) 

Note, that in (38), the true parameters  n
i

DL

i

UL

i tLtL
1

)1( ),1(


  and 

 n
i

DL

i

UL

i tXtX
1

)1( ),1(


  are not available at the moment of allocation 

(i.e. at t
th

 monitoring interval). However, we can use the predicted 

values  n
i

DL

i

UL

i tLtL
1

)1(ˆ ),1(ˆ


  instead of  n
i

DL

i

UL

i tLtL
1

)1( ),1(


 , and 

estimate  n
i

DL

i

UL

i tXtX
1

)1( ),1(


  using well-known relation [156]: 

ni
SE

tx
tX

SE

tx
tX

DL

iDL

iUL

iUL

i 





 1   ,)1(   ,)1(  (39) 

where SE
UL

, SE
DL

 are the spectral efficiencies of the uplink and 

downlink LTE channels, respectively (in bits per second (bps)/Hz). 

We also consider that in LTE the bandwidth assigned to eNBs affects 

both the uplink and the downlink channels, and therefore both uplink 

and downlink load indicators
1
 γi

ULmod
 and γi

DLmod
 should be taken into 

account for weight assignment, i.e.: 

                                                           
1 In this work we assume that eNBs operate on unpaired frequency bands (i.e. uplink and 

downlink channels share the same frequency band). Therefore, a proper bandwidth 

allocation scheme should account both uplink and downlink load indicators. If the model 

comes on paired spectrum (uplink and downlink channels operate on different frequency 
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niDL

i

UL

ii  1   ,modmod    (40) 

Combining (38), (39) and (40) we get the expression (27) given in 

previous section. 

4 Algorithm Performance 

In this section a summary of the algorithm performance if presented. 

More detailed service performance evaluation can be found in the 

corresponding paper. 

The simulation model of the network consists of seven eNBs 

connected to the server via NRM using 1Gbit/s data rate IP links. Each 

eNB serves a number of fixed user equipments (UEs), randomly 

positioned in the system area with 1km radius. The simulation model 

has been developed using the OPNET simulation and modeling 

package [112]. Parameters of the simulation model are listed in Table 

9. The total available bandwidth in simulations is equal C = 35 MHz. 

The length of the monitoring time interval is set to be equal Δt = 10sec. 

                                                                                                                                           
bands), the bandwidth would be allocated separately to the uplink (based on uplink load 

indicator) and downlink (based on downlink load indicator) transmissions.  
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Table 9. Simulation Parameters 

Parameter Value 

PHY profile: Operation mode FDD 

Cyclic Prefix Type Normal (7 Symbols per Slot) 

Carrier frequency 2GHz 

Subcarrier spacing 15kHz 

MCS 9 (16QAM with coding rate = 0.601563) 

EPC Bearer Definitions 348kbit/s (Non-GBR) 

BSR parameters: Periodic Timer 5 subframes 

Retransmission Timer 2560 subframes 

PS scheme: PF throughput  

 

In this work performance of the proposed PRA algorithm with 

modified load indicators (denoted via MLI) is compared with the 

performance of other commonly used resource allocation schemes: 

bandwidth allocation scheme with conventional load indicators 

(denoted via LI) and fixed bandwidth allocation scheme (denoted via 

FA). Description of the simulated schemes is provided in Table 10. 

Simulation parameters of LI and FA schemes are the same as in MLI. 

Table 10. Simulated Bandwidth Allocation Schemes 

Scheme Optimization Criteria Weight Generation 

FA Equal Fixed Bandwidth Allocation ni
i

 1  ,1  

MLCI Weighted Proportional Fairness niDL

i

UL

ii
 1  ,modmod   

LCI Weighted Proportional Fairness niDL

i

UL

ii
 1  ,  
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Two scenarios have been used to observe the algorithm performance. 

In the first homogeneous scenario, referred as “voice”, each eNB 

served only VoIP users. In the second heterogeneous scenario, referred 

as “mix”, the traffic of eNBs is represented by a “mixed” traffic 

comprising VoIP, video and data users. The overall number of users of 

each type is in proportion to 2:2:3 for VoIP, video, and data, 

respectively. The VoIP traffic is generated by using the G.723.1 (12.2 

Kbps) codec with a voice payload size 40 bytes and a voice payload 

interval 30 ms. Each VoIP user might be either in active (talk-spurts 

period) or inactive (silent period) state. The durations of the talk-spurts 

and silent periods are exponentially distributed with 0.65s and 0.352s 

means, respectively. Video services are simulated using a high 

resolution video model with a constant frame size equal 6250 bytes and 

exponentially distributed frame inter-arrival intervals (with mean equal 

0.5s). Data users in simulations are HTTP1.1 users generating pages or 

images with exponential page inter-arrival intervals (mean equal 

60sec). It is assumed that one page consists of one object, whereas one 

image consists of five objects. The object size is constant and equal 

1000 bytes.  

Figures presented below illustrate performance of different 

bandwidth allocation schemes for different traffic mixes with different 

traffic loads in the networks. Figure 37 shows the packet transmission 

and queueing delays calculated in the uplink and downlink directions in 

scenarios with voice users. Figure 38 shows the packet transmission 

and queueing delays in the uplink and downlink directions in scenarios 

with voice, video and data applications. From these graphs it follows 

that both MLI and LI reduce the transmission and queueing delays by a 

significantly margin for voice and mixed traffic scenarios. However, 

performance of MLI is better than performance of LI, especially in case 

of heterogeneous user traffic. 
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Fig. 37. Total MAC-layer packet delay in scenarios with voice traffic 

 

Fig. 38. Total MAC-layer packet delay in scenarios with mixed traffic 

Significant performance improvement of MLI is achieved because it 

reduces not only the average packet queuing and transmission delays, 

but also the average delay due to uplink packet scheduling. Figures 39, 

40 show the uplink packet scheduling delay with MLI, LI and FA in 

homogeneous and heterogeneous scenarios, respectively. 
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Fig. 39. Delay due to uplink packet scheduling in scenarios with voice traffic 

 

Fig. 40. Delay due to uplink packet scheduling in scenarios with mixed traffic 

Delay due to uplink packet scheduling reduces with MLI because of 

the following reasons. In LTE, the network resources are allocated to 

users for uplink and downlink data transmissions in terms of resource 

blocks (RBs). Resource allocation (scheduling) is usually performed 

periodically within a fixed time interval, called scheduling period Δtsc 

with minimal duration 1 transmission time interval (TTI) or 1 ms. The 

scheduling is done by the packet scheduler in the eNB both for uplink 

and downlink transmissions. The scheduling decisions are carried by 

the physical uplink control channel (PUCCH) and physical downlink 
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control channel (PDCCH) in uplink and downlink directions, 

respectively [94, 157, 158].  

According to LTE specifications, PDCCH occupies first 1, 2, or 3 

OFDM symbols (the number of OFDM symbols is indicated by control 

format indicator (CFI)) in a time slot extending over the entire system 

bandwidth. PDCCH is constructed from Control Channel Elements 

(CCEs). The number of CCEs indicates the capacity of PDCCH, i.e. the 

maximal number of users that can be scheduled during the considered 

TTI. For fixed CFI, the number of CCEs depends on the channel 

bandwidth (the number of CCEs for 5, 10 and 20 MHz bandwidth is 

given in Table 11) [159]. Based on these considerations, the number of 

users that can be scheduling during a considered TTI is equal to the 

number of CCEs.  

Table 11. The Number of CCEs for Different Bandwidth [159] 

 

If the traffic intensity of eNB is low, than the PUCCH/PDCCH are 

under-utilized; if the traffic intensity of eNB is high, than the users will 

be delayed not only because of the queuing, but also due to absence of 

free control channels. On the contrary, in MLI the number of users that 

can be scheduled during each TTI depends on the bandwidth assigned 

to eNB (NPS = 2, 7, 12, 25 or 36 users for 1.4, 3, 5, 10 and 20 MHz 

bandwidth, respectively). Thus, if the traffic intensity in eNB is low, 

and eNB is assigned lower bandwidth (1.4 or 3 MHz), the control 

channel resources are not waisted. On the other hand, if the traffic 

intensity is high, than eNB is assigned higher bandwidth (10 or 20 

MHz), and therefore the number of users that can be scheduling during 

The Number of CCEs per time slot, NCCE Bandwidth (MHz) 

1.4 3 5 10 20 

CFI = 1 OFDM symbol per time slot 1 2 3 8 17 

CFI =2 OFDM symbols per time slot 2 7 12 25 50 

CFI =3 OFDM symbols per time slot 4 12 20 41 84 
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each TTI increases, which will decrease the delay due to uplink packet 
scheduling. 
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CHAPTER 5: Dynamic Resource Allocation in a 
LTE/WLAN Heterogeneous Network 

 
 
 

In this chapter a resource allocation technique for a combined 
LTE/WLAN  CRN  in  Scenario  1  is  presented.  Description  of  the 
network deployment scenario has already been provided in Overview 
of this thesis. Here we focus on specific challenges of resource 
allocation in the complex networks comprising more than one RAT, 
propose the algorithm for spectrum access in combined LTE/WLAN 
architecture, and evaluate its performance based on results of 
simulations in OPNET environment [112]. The corresponding paper 
has been published in Proceeding of IEEE International Congress on 
Ultra-Modern  Telecommunications  and  Control  Systems  (ICUMT), 
2012. 

 
 

1 Introduction 
 

With widespread use of wireless networks and the emergence of 
multiple deployed wireless standards the wireless network design 
paradigm is changing rapidly [1, 101]. In the future, the wireless 
services will be provided using heterogeneous network comprising 
multiple RATs rather than using a single standard network [102, 103]. 
Also, the emergence of software defined radio (SDR) will allow the 
users to connect to any RAT based on the offered QoS and capacity 
levels [102]. 

Radio resource management in heterogeneous network is a complex 
task due to diversified requirements of its member networks, including 
different physical layer characteristics, channel access mode, MAC- 
layer parameters, etc. For instance, IEEE 802.11 WLAN network uses 
contention based random multiple access technique for channel access 
over the wireless medium. This technique is usually characterized by 
numerous collisions, which can reduce the achievable throughput of 
WLAN  users  [69].  In  LTE  network  the  (potential)  contention  is 
resolved by using a Random Access Contention Resolution and 
Scheduling Request (SR) procedure. Hence, the collision probability in 
a LTE network is close to zero, thus not affecting the service rates of 
LTE nodes [70]. As a result, the throughput and QoS in LTE eNBs and 
WLAN APs operating on the same bandwidth will be different. 

Initial approach for resource allocation in combined LTE/WLAN 
CRN is very similar to the one deployed in LTE-based CRN. Each 
AP/eNB is assigned with appropriate bandwidth proportional to the 



 

 

 

  

 

 

115 

value of its load control (LC) indicator, which measures the degree of 

load variation in service node. In this way a larger bandwidth is 

assigned to service nodes with increasing load, and smaller – to the 

nodes with decreasing load. The difference between the algorithm used 

for resource allocation in combined network and the algorithm used in 

LTE network is in the way the LC indicators are obtained. To be able to 

account for different spectral efficiencies, and channel access 

techniques deployed in LTE eNBs and WLAN APs, the spectrum 

efficiency and collision ratio metrics are measured discontinuously in 

each service node, and further used to calculate the values of LC 

indicators together with predicted traffic load in APs/eNBs. Further in 

this Chapter we briefly outline the algorithm for resource allocation, 

and show its performance based on simulation model developed using 

OPNET platform [112]. 

2 Resource Allocation Algorithm 

In this section the proposed algorithm for resource allocation in 

combined LTE/WLAN CRN is briefly summarized. More detailed 

description of the algorithm can be found in the corresponding paper.  

Considered cognitive network architecture is illustrated on Figure 41. 

It consists of n service nodes (LTE eNBs and WLAN APs) connected 

to the LTE System Architecture Evolution Gateway (SAE GW). The 

communication between each eNB/AP, SAE GW and external 

networks is realized using high-speed IP links. In LTE, the 

communication interface been LTE service nodes (eNBs) and SAE GW 

is called S1 interface, the interface between non-LTE service nodes 

(APs) is called S2 interface, and the interface between SAE GW and 

external networks is called SGi [129, 130].  

In the model, resource allocation and control is carried by the 

Network Resource Manager (NRM) located in SAE GW. The network 

resources are represented by the total available bandwidth C and shared 

among service nodes according to a certain resource allocation policy. 
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Fig. 41. Combined LTE/WLAN cognitive network architecture 

The assumptions of the model are summarized below: 

1. uplink (UL) and downlink (DL) buffers of service nodes have known 

finite capacities denoted Q
UL

max and Q
DL

max;  

2. parameter monitoring, bandwidth allocation and traffic prediction is 

performed within discrete fixed time intervals {[tΔt, (t+1)Δt]}, with t 

denoting the index of time interval.   

3. the buffer length, the amount of data arrived to the buffers of service 

nodes and the number of collisions occurred during each time 

interval are known;  

4. data collected and predicted separately for each UL and DL 

direction.   

The following notations are used in this Chapter: 

xi – bandwidth (in Hz) allocated to service node i at the (t+1)
th

 time 

interval. 

Qi
UL

(t), Qi
DL

(t), Qi (t) –length of the buffers (in bits) of service node i 

at t
th

 time interval on the uplink, the downlink and the unspecified 

(general) channels, respectively;  

Xi
UL

(t), Xi
DL

(t), Xi(t) – the amount of data served (in bits) at the buffer 

of service node i at t
th

 time interval on the uplink, the downlink and the 

unspecified (general) channels, respectively;  
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Li
UL

(t), Li
DL

(t), Li(t) – the amount of data arrived (in bits) to the 

buffer of service node i at t
th

 time interval on the uplink, the downlink 

and the unspecified (general) channels, respectively;  

Di
UL

(t), Di
DL

(t), Di(t) – the amount of data dropped (in bits) from the 

buffer of service node i at t
th

 time interval on the uplink, the downlink 

and the unspecified (general) channels, respectively. 

Nci
UL

(t), Nci
DL

(t), Nci(t) – the number of collisions occurred at the 

service node i at t
th

 time interval on the uplink, the downlink and the 

unspecified (general) channels, respectively. 

The algorithm proposed for resource allocation in LTE/WLAN CRN 

is very similar to the one proposed for LTE network. To deal with 

heterogeneous network applications, we propose to apply the concept 

used in optimal flow and congestion control (OFC) [65], and assign the 

network resources to the service nodes based on the values of load 

control (LC) indicators. However, in combined network architecture it 

is necessary to take into account that different wireless networking 

standards have different spectral efficiency, which means that for the 

same allocated bandwidth the throughput and the QoS of the users of 

LTE eNBs and WLAN APs will be different. A contention based 

random multiple access technique is deployed in WLANs that is 

usually characterized by numerous collisions, which can reduce the 

achievable throughput of WLAN users [69]. In LTE, the potential 

contention is resolved by using a Random Access Contention 

Resolution and Scheduling Request (SR) procedure. Therefore the 

collision probability in a LTE network is close to zero, thus not 

affecting the service rates of LTE nodes [70].  
To be able to account for different spectral efficiencies, and channel 

access techniques in a LTE/WLAN network, it is necessary to include 
the spectral efficiency and the collision ratio metrics in bandwidth 
allocation algorithm. In our model these metrics are used to calculate 
the amount of data served during each time interval Δt as shown below   
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 )1()1( ,)1(  (41) 

where SEWLAN, SELTE are the spectral efficiency of IEEE802.11g and 

LTE standards in bits/s/Hz, respectively (the SE value depend on MCS 

used in respective service node); Pci is the collision ratio measured in 
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service node i which is the ratio of number of collisions to data volume 

at each service node given by 
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The bandwidth allocation algorithm consists of a number of steps 
described below. At time interval t:  

1. Input: The service nodes monitor 
n
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i tNctNc 1)}(),({   and send this information 

to the NRM using IP links. 

2. Prediction: Using the input information collected up to t
th

 

monitoring interval, NRM computes the predictions 
n

i

DL

i

UL

i tLtL 1)}1(ˆ),1(ˆ{   using PLR parameter estimation applied 

with AR(1) time-series model (detailed description of PLR technique 

and AR model has already been provided in Chapter 1). 

3. Load Control: Based on the values n
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n

i

DL

i

UL

i tQtQ 1)}(),({  , NRM assigns the 

uplink and downlink collision-based load control (CLC) indicators 

for WLAN APs:  

    

)(

)
)(

)(
1()1(ˆ)(

)(

)
)(

)(
1()1(ˆ)(

tQ

SE

tx

tL

tNc
tLtQ

tQ

SE

tx

tL

tNc
tLtQ

DL

i

DL

WLAN

i

DL

i

DL

iDL

i

DL

i

DL

i

UL

i

UL

WLAN

i

UL

i

UL

iUL

i

UL

i

UL

i












 











 








 (43) 

and LTE eNBs: 
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where [x]
+
 denotes max(0, x). These weights are used later in 

weighted proportional fairness problem. The justifications behind 

using the expression (43), (44) have already been provided in 

Chapter 4. 

4. Optimization: Using generated LC indicators, NRM generates the 

weights 
n

i

DL

i

UL

ii 1}{   , and calculates the bandwidth  
n

iix 1}{   

that will be assigned to each service node in the next (t+1)
th

 

monitoring interval based on the weighted proportional fairness 

criterion, and transmit these values to corresponding eNBs via IP 

links. 

5. Output: Received bandwidth allocation values 
n

iix 1}{   are assigned 

to the physical interfaces of the corresponding service nodes at the 

beginning of the (t + 1)
th

 monitoring interval. 

3 Algorithm Performance 

In this section a summary of the proposed algorithm performance is 

provided. More detailed performance analysis can be found in the 

corresponding paper.  

An OPNET based simulation model has been developed to observe 

the performance of the proposed resource allocation algorithm using 

collision-based load control (LC) indicators. It comprises seven service 

nodes: four LTE eNBs and three Wi-Fi (IEEE802.11g) APs, 

communicating with SAE GW using 1Gbit/s IP links. Each 

AP/eNodeB serves a number of fixed user terminals through the radio 

interface randomly positioned in a total coverage area with a 1000m 

radius.  
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In this work performance of the proposed bandwidth allocation 

scheme (denoted CLC) is compared with the performance of two other 

bandwidth allocation schemes. First scheme (denoted LC) is similar to 

the one used for bandwidth allocation in LTE network, i.e. when the 

collision ratio metric is not considered in expression for load control 

indicators. Another scheme (denoted FA) is fixed bandwidth allocation 

scheme in which all eNBs are assigned fixed 5 MHz bandwidth, all 

APs are operate with 11 Mbits/s data rate (corresponding to 7MHz 

bandwidth) [69, 70].  

In all simulations total available bandwidth is equal C = 40 MHz, the 

time interval for resource allocation is equal Δt = 10s. Both LTE and 

WLAN service nodes can operate only with discrete values of 

transmission rates as listed in Table 12. Most important simulation 

parameters of LTE and WLAN air interfaces are provided in Table 13. 

Performance of the bandwidth allocation schemes were analyzed for 

high priority delay-sensitive VoIP services. VoIP traffic was simulated 

by using G.723.1 (12.2 Kbps) codec with 40 bytes codec sampling size, 

and 30 ms codec sample interval. Discontinuous Transmission, Voice 

Activity Detection and Comfort Noise Generation are also applied. 

Table 12. Transmission Parameters [69, 70] 

Interface The set of scalable bandwidth/service rate values 

Scalable Parameter Range Buffer Capacity in kbits/s 

IEEE 

802.11g 

Service Rate in 

Mbits/s 

1, 2, 5.5, 11, 6, 9, 12, 18, 

24, 36, 48, 55 

1024 

LTE Bandwidth in 

MHz 

1.4, 3, 5, 10, 15, 20 1620, 3250, 6500,14000, 

19500, 26000 
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Table 13. Key Simulation Parameters 

Interface Parameter Value 

LTE PHY Profile: Operation mode FDD 

Cyclic Prefix Type Normal (7 Symbols per 

Slot) 

Carrier frequency 2GHz 

Subcarrier spacing 15kHz 

MCS 16QAM with coding rate 

0.601563 

EPC Bearer 

Definitions 

348kbit/s (Non-GBR) 

BSR Parameters: Periodic Timer 5 subframes 

Retransmission 

Timer 

2560 subframes 

PS Scheme PF Throughput  

IEEE 

802.11g 

PHY Profile: Multiple Access 

Method 

CSMA/CA 

Carrier frequency 2GHz 

Subcarrier spacing 312.5kHz 

MCS BPSK, QPSK, 6QAM, 

64QAM 

Retransmission 

Parameters: 

Long Retry Limit 4 

Short Retry Limit 7 

 

Figures below demonstrate the application-layer performance (packet 

end-to-end delay and packet loss) of the considered bandwidth 

allocation schemes for VoIP users. These figures show that both LC 

and CLC reduce the delay in LTE and WLAN interfaces. However, 

CLC show better performance than LC in terms of the packet delay, 
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especially for WLAN network under high load conditions (0.5% packet 

loss in LC versa 1.5% and 3% loss in CLC and FA, respectively). 

 

Fig. 42. Packet end-to-end delay in LTE network 

 

Fig. 43. Packet end-to-end delay in WLAN network 
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Fig. 44. Packet loss in LTE network 

 

Fig. 45. Packet loss in WLAN network 

Such results can be explained using the Figure 46 showing the 

collision ratio in the WLAN network. Collisions in WLAN reduce the 

service rate of APs resulting in higher packet loss of WLAN users. 

Since the LC algorithm does not account the collision ratio for the 

bandwidth allocation, it performs purely in terms of the WLAN loss 

ratio. On the other hand, the CLC algorithm outperforms the LC 
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algorithm by allocating more bandwidth to WLAN users with non-zero 

collision ratio (ref. to (41)). 

 

Fig. 46. Packet collision ratio in WLAN network 
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CHAPTER 6: Resource Allocation Algorithm in 

Cognitive LTE Network with Heterogeneous User Traffic 

In this chapter a resource allocation technique for a cognitive LTE in 

Scenario 1 is presented. Description of the network deployment 

scenario has already been provided in Overview of this thesis. Here we 

present the proposed approach for resource allocation, derive resource 

allocation algorithm, and present the results of algorithm performance 

based on simulation model developed in OPNET environment [112]. 

The corresponding paper is published in proceedings of IEEE GLOBal 

COMmunications (GLOBECOM) Conference in December 2013. 

1 Introduction 

A significant progress has been recently made in resource allocation 

for IEEE802.22 CRN architecture. Nevertheless, many challenges still 

remain [54]. For instance, most research has focused on individual 

techniques for identifying and reducing the interference (by controlling 

transmit power, carrier sense, or scheduling) for the users of CRN (see, 

for instance, [55 - 58]). In general, however, the system performance 

depends on many external factors, including user behavior, traffic load, 

channel quality, etc. [54].  

Some theoretical models of the user behavior and traffic load in CR 

network have been proposed in [59 - 62], but the assumptions made in 

theoretical research often fail under realistic operating conditions due to 

the fact that a system may operate in diverse environments (e.g., in 

different types of city, rural, campus, and indoor deployments) [54]. It 

is therefore very difficult to obtain some general theoretical model 

which can be applied for different network deployment scenarios. More 

rational would be to: i) identify most critical parameters affecting the 

system performance; ii) investigate all available tools to analyze the 

service quality in the network based on the certain parametric 

observations collected in different locations at different time, and iii) 

apply these tools in spectrum allocation algorithm in order to improve 

the service performance of CR system.  
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Based on these considerations, we propose an alternative way for 

resource allocation in the standard IEEE 802.22 CRN architecture 

where each SP is represented by its LTE evolved NodeBs (eNBs). 

Using the fact that the overall system performance depends on many 

factors (including user behavior, traffic load, channel quality, etc.), 

which are difficult to model analytically, we propose to apply some 

form of reinforcement learning [160, 161] in spectrum allocation 

algorithm and propose to make a short-term resource allocation based 

on the long-term traffic predictions. In this way we enforce the network 

to learn from the environment, and adapt according to the current 

network conditions.  

The rest of the Chapter is organized as follows. In section 2 we 

describe the main idea behind the proposed resource allocation 

approach and how it can improve the network performance in 

heterogeneous network environment. In section 3 we formulate the 

optimization problem, specify the solution techniques and summarize 

the proposed algorithm for resource allocation in CR system. In section 

4 we give the example of the algorithm implementation in LTE-based 

CRN and provide the detailed performance analysis of the algorithm. 

2 Proposed Approach for Resource Allocation 

According to [54], the individual spectrum bands are used in a fairly 

homogeneous fashion. In contrast to them, the usage pattern in CRN is 

in general heterogeneous. Consider, for instance, the intra-campus 

network where some of the eNBs are located in academic schools, other 

eNBs serve the staff buildings and the school libraries, whereas the rest 

provide the wireless access in residential areas. It is reasonable to 

expect that the usage pattern in eNBs will be very different. For 

instance, the school eNBs might experience heavy demand during the 

lecture hours and will not be used the rest of the time, the eNBs located 

in the offices and libraries will be loaded during the day-time and 

empty during the night, whereas the eNBs in residential buildings will 

be mostly used in the evening and night time. The web applications and 

traffic patterns of the individual users of these eNBs might also vary: 

the students and staff in the offices and the libraries might access the e-

mail and perform the web-search, whereas in residential buildings the 
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VoIP, video and on-line games might be used more frequently. Thus, to 

build a practically sustainable system it is important to keep in mind 

that different eNBs might operate in different conditions, i.e. the 

network usage is location and time dependent and the service demand 

in the network is heterogeneous.  

Most of the resource allocation strategies for CRN have been 

deployed for homogeneous scenarios and not very efficient in case of 

heterogeneous network applications [59 - 62, 71 - 74]. This is due to 

the fact that all users in the network are characterized by similar utility 

functions. Existing approaches to deal with the problem of resource 

allocation in the network with heterogeneous user demands (for 

instance, [76 - 78]) are either very complex (such as [76]) or lead to 

rather unfair resource allocation in the sense that applications with 

lower demand are allocated a higher transmission rate than applications 

with higher demand ([77, 78]).  

In this work we suggest to deploy an alternative approach for 

resource allocation in cognitive LTE network, and propose to make a 

short-term resource allocation based on the long-term traffic prediction 

(here and after we call this approach a “multi-step allocation”). The 

idea behind this approach can be formulated as follows. Consider a 

system illustrated on Figure 47. The system operates on a slotted time 

basis, e.g. the time axis of the system is partitioned into discrete 

mutually disjoint intervals (time slots) {[tΔ, (t+1)Δ]}, t = 0, 1, 2, …, of 

the length Δ with t denoting the integer valued index of a time slot.  

In the system n sources, denoted via s1, s2,…, sn, randomly generate 

the packets and send them to the dedicated queues, denoted via q1, 

q2,…, qn, respectively. Let Ai(t) be the (random) number of packets 

arrived to the queue qi at time slot t. We assume that at any time slot t 

the random parameter Ai(t) can be observed and collected from any 

queue in the system. 

The queues receive the packets, and serve them with some 

deterministic packet service rate. Let Xi(t) be the (deterministic) 

number of packets served by the queue qi at time slot t. We assume that 

the parameter Xi(t) is adjustable (i.e. can be changed), positive and at 

any time slot t it can be observed and collected from any queue in the 

system. Clearly, the size of the queue qi at time slot t, denoted via Qi(t), 

depends on the number of packets arrived and served by the queues, 
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Ai(t) and Xi(t). The relation between Qi(t), Ai(t) and Xi(t) is established 

in the well-known Lindley’s equation [23] given by: 

  niktXktAktQktQ iiii ,...,1   ,)()()1()( 


  (45) 

where [x]
+
 denotes max(0, x). 
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Fig. 47. The discrete-time system with n queues 

We assume that at any time slot t the parameter Qi(t) can be observed 

and collected from any queue in the system. 

Suppose, that at any time slot t we can make the predictions Â1(t+k), 

…, Ân(t+k) and adjust the service rates X1(t+k), …, Xn(t+k) for a short-

term (k = 1) and a long-term (k = 2, 3, …) period in the future. Then the 

size of the queues can be estimated recursively using (1).  

An illustrative example of such estimation for the system comprising 

two sources, with C = 6, Q1(t) = Q2(t) = 0 and X1(t+k) = X2(t+k) = 3 for 

k = 1, 2, 3, … 10 is shown on Figures 48 - 51.  

The sources generate the packets in rather different manner (Figure 

48 shows the packet arrivals from the sources during the observation 

period t, …, t+10). The average number of packets generated by the 

first source during the observation period is much smaller than the 

number of packets generated by the second source (1 packet per time 

for the first source slot versa 4.1 packets per time slot for the second 

source). However, the peak number of packets generated by the first 

source is greater than the peak number of packets generated by the 
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second source (10 packets per time for the first source slot versa 5 

packets per time slot for the second source).  

 

Fig. 48. Packet arrivals generates by source 1 and source 2 during 10 time slots 

 

Fig. 49. Queue size with constant service rate (3 packet/slot) of the queue 1 and queue 2 
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Fig. 50. Queue size with “single-step allocation” 

 

Fig. 51. Queue size with “multi-step allocation” 

Consequently, in the short-term (k = 1) future the size of the queue q1 

will be much bigger than the queue q2, because the batch of packets 

generated by the first source at time slot t is much longer that the batch 

of packets generated by the second source (Figure 49 shows the size of 

the queues (in packets) during this time interval). However, in the long-

term future all packets generated by the first source will be served 
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within 2 time slots, whereas the size of the queue q2 will increase, 

because the second source will keep generating the packets all the time 

within the considered period.  

Now assume that at any time slot t the number of packet served by 

the queues within the next time slot, X1(t+1) and X2(t+1) can be 

adjusted based on some optimality criteria given that X1(t+1) + X2(t+1) 

≤ C. Suppose, we decide to make a short-term allocation to minimize 

the aggregated size of the queues in the short-term future, i.e. at any 

time slot t during the observation period we allocate X1(t+1), X2(t+1) to 

minimize Q1(t+1) + Q2(t+1). Here and after in the paper we call this 

approach for resource allocation a “single-step allocation” to emphasis 

the fact that the resources are allocated based on the short-term (k = 1) 

prediction. In this case the queue of the first source will be cleared 

within 3 time slots, whereas the queue of the second source will be 

cleared within 8 time slots (the size of the queues in the system with 

single-step resource allocation is shown on Figure 50). Apparently, this 

approach for resource allocation is rather unfair because the first source 

with lower average demand is allocated higher service rate than the 

second source with higher demand. 

On the other hand, we can decide to make a short-term allocation to 

minimize the aggregated size of the queues in the long-term future, i.e. 

at any time slot t during the observation period we allocate X1(t+1), 

X2(t+1) to minimize Q1(t+k) + Q2(t+k) for k = 1, 2, 3, … 10. We call 

this approach for resource allocation a “multi-step allocation” to 

emphasis that the resources are allocated based on the long-term (k > 1) 

prediction. In this case the queues of the second source will be cleared 

more quickly, and as a result, the delay experienced by the second 

source will be less than that in single-step allocation (the size of the 

queues in the system with multi-step resource allocation is shown on 

Figure 51). Besides, by applying the multi-step allocation we also 

decrease the average size of the queues during the observation period 

(2.5 packets versa 2.9 packets in single-step allocation).  

This example shows that in heterogeneous network environment the 

traditional approach for resource allocation when a short-term resource 

allocation is made based on the short-term traffic prediction (see, for 

instance [63, 64]) leads to rather unfair resource allocation when the 

applications with lower average demand are allocated higher service 

rate than the applications with higher demand. On the contrary, by 
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applying a multi-step allocation when the resources are allocated based 

on the long-term traffic prediction we increase the fairness of resource 

allocation and decrease the average size of the queues (and therefore 

the average packet delay) in the system. 

3 Resource Allocation Algorithm 

3.1 Optimization Problem 

Consider the standard IEEE 802.22 CR network architecture where n 

LTE eNBs numbered eNB1, …, eNBn share the total available 

bandwidth b using the SM according to some predefined spectrum 

usage policy. The system operates on a discrete-time basis, e.g. the time 

in the system is partitioned into discrete mutually disjoint intervals, 

called time slots, with t denoting the integer valued index of a time slot.  

The system serves a number of wireless users connecting to the eNBs 

in their service area (cell) and generating a random traffic expressed in 

bits per time slot (bps). We use the notation Ai(t) to denote the 

aggregated user traffic in eNBi at time slot t.  

The service rate of the eNB depends on the portion of bandwidth 

assigned to the eNB and the spectrum efficiency of the wireless channel 

between the user and the eNB. The relation between the service rate, 

the bandwidth and the spectrum efficiency of the wireless channel is 

given by well-known expression [156]: 

nitXSEtb iii ,...,1   ),()(     (46) 

where Xi(t) is the service rate (in bits per time slot or bps) of eNBi at 

time slot t; bi(t) is the bandwidth (in Hz) assigned to eNBi at time slot t; 

SEi is the spectrum efficiency (in bits per time slot per Hz or bps/Hz) of 

the wireless channel, which depends on the physical channel 

characteristics (such as modulation and coding rate) and the channel 

quality (signal-to-noise ratio). 

Clearly, the system described above can be described using the model 

shown on Figure 47. Here each eNB will be represented by a single 

infinite queue, whereas all users connected to the eNB will form the 

source served by this queue. 
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We set the objective to allocate the service rates of eNBs in such way 

that the total system bandwidth will not exceed the predefined limit b 

based on some optimality criterion denoted via f. The appropriate 

choice of the criterion f is apparently one of the most critical factors 

affecting the performance of resource allocation for practical network 

implementations [75].  

For most of the network applications (such as voice, video, data), the 

user-perceived QoS is determined in terms of the packet end-to-end 

delay and packet loss experienced by the user. For instance, for VoIP 

applications the satisfactory service is achieved when packet end-to-end 

delay does not exceed 300ms with packet loss less than 5%; for 

videoconference users the QoS requirements are the same as for VoIP 

applications; for streaming video the packet end-to-end delay should 

not exceed 4-5 sec with packet loss less than the QoS requirements for 

video applications are the satisfactory service network performance is 

achieved when packet end-to-end delay does not exceed 200ms with 

packet loss less than 1% [79]. Therefore, it would be reasonable to 

represent the optimization objective in terms of the packet delay or 

packet loss. However, in general it is very difficult to estimate the 

values of the packet delay or loss accurately, because they depend on 

many network parameters some of which might not be possible to 

observe directly. More convenient would be to use the queue size as an 

optimization objective because: 1) it can be easily estimated using the 

Lindley’s equation [80]; 2) it is the key parameter affecting both packet 

delay and loss.   

Based on such considerations, we propose to represent the 

optimization objective f in terms of the aggregate size of the queues 

over the long-term period t+1, …., t+k in the future as: 
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Then, the optimization problem for resource allocation is formulated 

as follows. We assume that: 
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1. at any time slot t the traffic generated by the users and the size of the 

queue, Ai(t) and Qi(t), can be observed and collected from all eNBs in 

the network;  

2. at any time slot t the service rates of eNBs, Xi(t), can be adjusted in 

such way that the aggregated bandwidth of the eNBs does not exceed 

the total available bandwidth b, i.e.: 

10   ,)()(
11




i

n

i

ii

n

i

i btXSEtb   (48) 

3. at any time slot t we can make short-term and long-term predictions 

of the traffic generated by the users, Âi(t+1) , …, Âi(t+k), in all 

eNBs.
2
 

With these assumptions the size of the queues over the long-term 

period t+1, …., t+k in the future can be estimated recursively using the 

Lindley’s equation [80]: 
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If we denote via x = [X
T
(t+1), …, X

T
(t+k)]

T
 the non-negative vector of 

service rate allocations at eNBs, then the optimization problem will be 

to find the optimal service rate allocation x
*
 = [X

*T
(t+1), …, X

*T
(t+k)]

T
 

that will minimize the aggregated size of the queues during the long-

term period in the future: 
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2 In this work we used PLR method applied with AR(1) time-series model for traffic prediction. 

Detailed description of this technique and the model has been already provided in Chapter 1. 
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3.2 Smooth Approximation of the Optimization Objective 

In (50) the inequality constraints are linear, but the objective function 

is a non-smooth convex function. In this paper we will follow the 

approach presented in [162] for non-smooth convex optimization 

problem. The main idea is to construct a sequence of convex functions 

... ),(ˆ ),(ˆ ),(ˆ
210 xfxfxf such that [162]: 

)()(ˆlim xfxfn
n




   (51) 

Subsequently, solve (50) via a sequential convex optimization 

approach as follows: 
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Then we solve ... ,ˆ ,ˆ ,ˆ
210 xxx until the sequence converges. To simplify 

the notation let us define: 
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Clearly, (49) can be written as: 
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Now consider the functions: 
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It is rather straightforward to verify that: 
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uniformly for α ≥ 0, β ≥ 0. In fact, the convergence is quite fast as 

illustrated on Figure 52.  

 

Fig. 52. Real and approximate Q(t+1) with different values of l 

With the approximation (55) we can approximate (54) smoothly as: 
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Using (57) we then use a smoothed approximation of f(x) as, see (50): 
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Note, that (58) implicitly depends only on n
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and the recursive procedure can be repeated until the expression is 

given only in terms of Qi(t). For the purpose of numerical algorithm 

development this underlying recursion can be utilized efficiently.  

The recursive procedures to compute the first and second derivatives 

of )(ˆ )( jtQ l

i   with respect to x are derived as follows. The first-order 

derivatives of ),(ˆ lh with respect to α and β are given by: 
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The second-order derivatives of ),(ˆ lh with respect to α and β are 

given by: 
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Let: 
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then: 

 

 
























































2

2

2

)(2
)(

2

)(2

)(
)(

)(

)()1(ˆ
)( ),(ˆ)1(ˆ)(ˆ

,
)()1(ˆ

)( ),(ˆ)1(ˆ)(ˆ

x

tX

x

tQ
tXtAtQ

x

tQ

x

tX

x

tQ
tXtAtQ

x

tQ

i

l

i
ii

l

il

l

i

i

l

i
ii

l

il

l

i





 (63) 

Similar to (54), expressions (55) and (56) can be used recursively to 

express  ,
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should be repeated until the expression is given only in terms of 
n
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Now we are ready to redefine the primary optimization problem (50) 

in terms of approximation )(ˆ xf l  given by (58) as follows: 
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 (65) 

Note, that (65) is a smooth convex optimization problem which can 

be solved by using any of the standard methods of convex 

minimization, such as subgradient, subgradient projection, "Bundle 

methods" [163], interior-point [164], cutting-plane [165], etc. In this 

work we used the primal-dual interior point algorithm because of its 

high efficiency and better than linear convergence, especially for the 

cases when the high accuracy is required [165]. Description of the 
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primal-dual interior point method can be found in [165]; solution of the 

problem (65) using this method can be found in the corresponding 

paper. 

3.3 Resource Allocation Algorithm 

Proposed resource allocation algorithm is summarized on Figure 53. 

At time slot t: 

1. The algorithm updates the values of Ai(t) and Qi(t) for AP1, …, APn. 

2. Based on the updated values Ai(t), the algorithm make the predictions 

Âi(t+1), …, Ân(t+k) for AP1, …, APn using PLR technique applied 

with AR(1) time-series model (description of the technique and the 

model has already been provided in Chapter 1).  

3. Based on updated values Qi(t) and predicted values Âi(t+1), …, 

Ân(t+k) for AP1, …, APn, the algorithm finds the optimal solution of 

the problem (16) using primal-dual interior point algorithm [165].  

4. At time slot t+1 the users will be assigned the optimal service rate 

Xi
*
(t+1). 

March 25, 2013

Page 1

Title
Algorithm 1. Generic multi-step resource allocation algorithm

Given C, n, k, γ 

At time slot t = 0, 1, 2, ... 

For each ith user queue 

       1. If t > 1 

               set Xi(t) := Xi*(t) 

       else 

               set Xi(t) := C/n

       2. Update Ai(t), Qi(t)

       3. Predict Âi(t+1), …, Ân(t+k)

For each ith user queue find optimal Xi*(t+1),..., Xi*(t+k)

 

Fig. 53. Proposed algorithm for resource allocation 



 

 

 

  

 

 

140 

4 Algorithm Performance 

4.1 Algorithm Implementation 

We now present the example of the algorithm implementation in the 

standard IEEE 802.22 CR network architecture [51, 52]. Considered 

network model consists of n LTE eNBs sharing the total available 

bandwidth b via the SM connected to eNBs via IP links. The SM 

operates both as a central gateway connecting the wireless network to 

external networks and as a central processor responsible for resource 

allocation in CR system.  

The following assumptions are made in this particular algorithm 

implementation: 

1. The slot duration in the algorithm is equal Δ = 1 s.  

2. In general, the traffic pattern generated by the users in uplink and 

downlink direction is very different. Therefore, we collect the traffic 

generated by the users and the size of the queues in all eNBs 

separately for uplink and downlink direction. We denote the uplink 

and downlink traffic generated by the users in eNBi at time slot t by 

Ai
UL

(t) and Ai
DL

(t), respectively; we denote the uplink and downlink 

size of the queue at eNBi at time slot t by Qi
UL

(t) and Qi
DL

(t), 

respectively.  

3. We predict the traffic generated by the users in all eNBs separately 

for uplink and downlink direction. We denote the uplink and 

downlink predictions of the traffic generated by the users of eNBi 

during time period t+1, …, t+k via Âi
UL

(t+1), …, Âi
UL

(t+k) and 

Âi
DL

(t+1), …, Âi
DL

(t+k), respectively.  

4. We find the optimal service rate allocation separately for uplink and 

downlink direction, and denote via Xi
UL

(t) and Xi
DL

(t) the service rate 

assigned to eNBi at time slot t in uplink and downlink directions, 

respectively.  

5. The bandwidth is assigned to eNBi based on the obtained uplink and 

downlink service rate allocation Xi
UL

(t) and Xi
DL

(t) using the 

expression: 

ni
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where the values of SEi are collected on the physical layer (PHY) of 

the corresponding eNB (based on the physical channel characteristics 

and the channel quality).  

Based on these assumptions, the proposed scheme for resource 

allocation can be described as follows. At time slot t: 

1. Each eNB collects the values of Ai
UL

(t) and Ai
DL

(t), Qi
UL

(t) and 

Qi
DL

(t) and SEi  and sends them to SM via IP links.  

2. Based on updated values Ai
UL

(t) and Ai
DL

(t), SM makes the 

predictions Âi
UL

(t+1), …, Âi
UL

(t+k) and Âi
DL

(t+1), …, Âi
DL

(t+k) for 

each eNB in the network.  

3. Based on updated values Qi
UL

(t) and Qi
DL

(t) and predicted values 

Âi
UL

(t+1), …, Âi
UL

(t+k) and Âi
DL

(t+1), …, Âi
DL

(t+k) SM finds the 

optimal service rate allocation at the next time slot Xi
UL

(t+1) and 

Xi
DL

(t+1) using the primal-dual interior point algorithm [165], 

calculates the bandwidth to be assigned to eNBs at the next time slot 

bi(t) using (66), and sends the values bi(t) to respective eNBs. 

4.2 Simulation Model 

A simulation model of the network has been developed upon the 

OPNET platform [112]. The model consists of n = 7 eNBs sharing the 

total available bandwidth b = 35 MHz, EPC with advanced SM 

functionalities, and a number of fixed user equipments (UEs). EPC is 

connected to the eNBs via 1Gbit/s data rate IP links. The radio network 

model has been developed according to the requirements of ITU-T 

Recommendation M.1225. Other simulation parameters have been set 

in accordance with LTE specifications [129, 133, 134] (the simulation 

parameters of the network model are listed in Table 14). 

Heterogeneous user traffic in simulations comprises voice, video and 

data applications. The following models have been used to simulate 

voice, video and data services.  

 The voice over IP (VoIP) service uses ON-OFF model with 

exponentially distributed ON-OFF periods. The mean duration of ON 

and OFF periods are 0.65s and 0.352s, respectively. The VoIP traffic 

is generated using G.723.1 codec with 12.2 Kbps rate, payload size 

equal 40 bytes and a payload interval equal 30 ms [167].  
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 Video services are simulated using a high resolution video model 

with a constant frame size equal 6250 bytes and exponentially 

distributed frame inter-arrival intervals (with mean equal 0.5s) [167].  

 Data applications are represented by the HTTP1.1 model with 

exponential page/image inter-arrival intervals (mean equal 60sec). It 

is assumed that one page consists of one object, whereas one image 

consists of five objects. The object size is constant and equal 1000 

bytes [167]. 

Table 14. Simulation Parameters of the Model 

Parameter Value 

Radio Network 

Model: 

Pass loss 
49log30log40

1010
 fRL , 

R – distance (km), 

f – carrier frequency (Hz) 

Shadow fading 

Log-normal shadow fading 

with a standard deviation of 

10/12 dB for outdoor/indoor 

users 

Penetration loss 

The average building 

penetration loss is 12 dB with a 

standard deviation of 8 dB 

Multipath fading 
Spatial Channel Model (SCM), 

Suburban macro 

Cell radius 1 km 

UE velocity 0 km/s 

Transmitter/Receiver 

antenna gain 

10 dBi (pedestrian),  2 dBi 

(indoor) 

Receiver antenna gain 
10 dBi (pedestrian),  2 dBi 

(indoor) 

Receiver noise figure 5 dB 

Thermal noise density –174 dBm/Hz 

Cable, connector, and 

combiner losses 
2 dB 

PHY profile: 

Operation mode 
Frequency Division Duplex 

(FDD) 

Cyclic Prefix Type Normal (7 Symbols per Slot) 

EPC Bearer Definitions 348kbit/s 

Carrier frequency 2GHz 

Subcarrier spacing 15kHz 
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Admission Control 

Parameters: 

Physical Downlink Control 

Channel (PDCCH) symbols 

per subframe 

3 

UL Loading Factor 1 

DL Loading Factor 1 

Inactive Bearer Timeout 20 sec 

Buffer Status Report 

Parameters: 

Periodic Timer 5 subframes 

Retransmission Timer 2560 subframes 

Layer1/Layer2 

Control Parameters: 

Reserved Size 2 RBs 

Cyclic Shifts 6 

Starting PRB for Format 1 

messages 
0 

Allocation Periodicity 5 subframes 

Random Access 

(RA) Parameters: 

Number of Preambles 64 

Preamble Format Format 0 (1-subframe long) 

Number of RA Resources 

per Frame 
4 

Preamble Retransmission 

Limit 
5 subframes 

RA Response Timer 5 subframes 

Contention Resolution 

Timer 
40 subframes 

Hybrid Automatic 

Repeat ReQuest 

(HARQ) 

Parameters: 

Maximal Number of 

Retransmissions 
3 (UL and DL) 

HARQ Retransmission 

Timer 
8 subframes (UL and DL) 

Maximal Number of 

HARQ processes 
8 per UE (UL and DL) 

In this work, performance of the proposed algorithm is compared 

with the performance of two most recent techniques designed to deal 

with heterogeneous user traffic: max-utility bandwidth allocation 

described in [77] and bandwidth allocation for the users with 

heterogeneous utilities described in [78]. In max-utility resource 

allocation the spectrum is assumed to be discrete: the total available 

bandwidth b is divided into N resource blocks, and within one time slot 

one resource block can be used only by one base station. Other settings 

of the algorithm are adopted from [77]. In the scheme with 

heterogeneous user utilities the spectrum is continuous. The bandwidth 

is assigned according to the distributed algorithm based on user 

demands of eNBs subject to the power and capacity constraints. 

Detailed description of the algorithm is given in [78].  
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We use the following abbreviations to differentiate the bandwidth 

allocation techniques: “Max Utility” for the algorithm described in 

[77], “Het Utility” for the scheme proposed in [78], “Singlestep” for the 

proposed algorithm with k = 1 and “Multistep” for the proposed 

algorithm with k = 3. We also benchmark the performance of these 

schemes with the performance of the simple fixed equal bandwidth 

allocation (denoted via “FA”) when all eNBs are assigned fixed 

bandwidth b/n = 5 MHz.   

4.3 Simulation Results 

Performance of different bandwidth allocation schemes in scenarios 

with low (< 18 Mbits/s), medium (18 ÷ 36 Mbits/s) and high (> 36 

Mbits/s) load is summarized on Figures 54 - 57. Figures 54 and 55 

show the total (UL and DL) MAC layer packet delay and loss for all 

user applications. Figures 56, 57 illustrate the application layer packet 

end-to-end delay (which consists of total MAC layer delay, 

coder/decoder delay, packetization and serialization delay, and de-jitter 

buffer delay) for voice and video users.  

 

Fig. 54. Total MAC layer packet delay for all types of applications 
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Fig. 55. Total MAC layer packet loss for all types of applications 

 

Fig. 56. Application layer packet delay for voice applications 
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Fig. 57. Application layer packet delay for video applications 

It follows from these graphs that: 

 FA demonstrates the worst (highest delay and loss) performance 
compared to all other schemes in medium and high load 
scenarios; 

 Het Utility, Max Utility and Singlestep bandwidth allocation 
show almost similar performance in all scenarios; 

 Multistep bandwidth allocation outperforms all other schemes in 
scenarios with medium and high load. 

These results show that the proposed “multi-step approach” can be 

effectively used for resource allocation in CRNs with heterogeneous 

user traffic 
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CHAPTER 7: A Two-Stage Resource Allocation 

Procedure for Cognitive LTE Network 

In this chapter a resource allocation technique for a cognitive LTE 

network in Scenario 2 is presented. Description of the network 

deployment scenario, as well as previous research on resource 

allocation for LTE-based CRN in Scenario 2 had already been 

summarized in Overview of this thesis. Here we present the proposed 

approach for resource allocation, derive two different algorithms for 

resource allocation, and present the results of algorithm performance 

based on simulation model developed in OPNET environment [112]. 

The corresponding paper has been published in Computer Networks, 

2014. 

1 Introduction 

In this work we consider a problem of resource allocation for the 

Third Generation Partnership Project (3GPP) long-term evolution 

(LTE) cognitive radio network (CRN). The CRN is made up of the 

licensed (primary) service stations which can share their spectrum 

resources with unlicensed (secondary) stations. The goal of resource 

allocation is to provide the wireless access to secondary stations 

without compromising the quality of service (QoS) for primary 

stations. To accomplish this goal, we utilize a simple procedure 

consisting of two stages. During the first stage the spectrum resources 

are allocated to primary stations to maximize the QoS for primary 

users. During the second stage the rest of the service capacity of the 

primary channels is distributed among secondary stations.  

Theoretical framework conducted in the paper is closely tightened 

with the specifics of LTE design. In particular, the problem of resource 

allocation is formulated as an integer-programming optimization 

problem based on assumption that the spectrum in LTE system is 

discrete (with a resource allocation granularity of 180 kHz in frequency 

domain and 1 ms in time domain).  
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Two algorithms of different complexities are derived in the paper 

based on the proposed two-stage resource allocation procedure. Both 

algorithms do not involve additional network signaling over the 

wireless medium. First algorithm is more suitable for implementation 

in CRN with light and smooth traffic and/or when the processing 

capabilities of CRN are low and restrictive (because of its simplicity 

and short running time). Second algorithm can be used in the network 

with heavy and/or bursty traffic. However, the implementation of this 

algorithm requires high processing capabilities. 

The rest of the paper is organized as follows. In section 2 we 

formulate the main idea behind the proposed resource allocation 

approach. Om section 3 we derive two algorithms for resource 

allocation in LTE-based CRN architecture. In section 4 we conduct the 

comparative performance analysis of the algorithm. 

2 Resource Allocation Procedure 

Considered network model consists of n primary (licensed) eNBs 

(PBs) numbered PB1, PB2, ..., PBn, and m secondary (unlicensed) eNBs 

(SBs) numbered SB1, SB2, ..., SBm. The eNBs are connected to the 

backbone server via a central network manager (CNM). The 

communication between the eNBs, CNM and the server is realized 

using high-speed IP links to facilitate fast data transmission (Figure 5).  

Each primary eNB operates on its fixed licensed spectrum band 

(primary channel) with some certain serving capacity. The primary 

eNB can share the primary channel with one or more secondary eNBs 

which don’t have fixed licensed spectrum bands. The PBs have 

prioritized access to the primary channel. The capacity (in bps) that a 

primary eNB station shares with a certain secondary base station 

depends on the channel allocation policy used by CNM. 

An LTE network operates on a slotted-time basis, i.e. the time axis is 

partitioned into mutually disjoint time intervals (slots) {tTs, (t + 1)Ts}, t 

= 0, 1, 2, ..., with Ts denoting the slot length and t denoting the slot 

index. Each eNB serves a number of wireless users located within its 

service area (cell). The user-generated traffic (in bps) is enqueued in the 

user equipments (UEs), and then transmitted to respective eNBs using 

the packet scheduling procedure described in LTE standard [81]. In this 
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procedure, the information about the amount of data (in bps) enqueued 

in the buffers of UEs are constantly transmitted to the eNB, so that the 

base station “knows” the exact amount of data generated by the users at 

any time slot t. This information is used by the eNB to allocate the 

uplink transmission resources to UEs using a certain scheduling 

algorithm. 

In the downlink, the transmission resources are allocated based on 

the amount of data arriving from CNM via IP link. Depending on the 

algorithm implementation, the packet scheduling can be based on the 

quality of service (QoS) requirements, instantaneous channel 

conditions, fairness, etc. [81]. The CRN architecture described above 

can be well represented by the system model comprising the set of n 

primary channels belonging to PB1, PB2, ..., PBn and m secondary 

channels belonging to SB1, SB2, ..., SBm. Each eNB (PB or SB) in the 

model is represented by the uplink and downlink infinite queue 

(primary or secondary). 

The general system model of CRN is illustrated on Figure 58. Note, 

that this model can be applied to both uplink and downlink directions. 

Similarly, the discussion in the rest of the paper is applicable to both 

directions.  
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Fig. 58. System model of CRN 

Here and after we use the notation: 
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 Q
P

i(t) - the size of the queue (in bits) at PBi at the beginning of t
th

 

time slot;  

 Q
S

j(t) - the size of the queue (in bits) at SBi at the beginning of t
th

 

time slot; 

 A
P

i(t) - the total amount of data (in bits/slot or bps) generated during 

t
th

 time slot by the wireless users of PBi; 

 A
S

j(t) - the total amount of data (in bps) generated during t
th

 time slot 

by the wireless users of SBi; 

 X
P

i(t) - the service rate (in bps) of PBi during t
th

 time slot; 

 X
S

ij(t) - the service capacity (in bps) that PBi shares with SBj during 

t
th

 time slot; 

 Ci – the service capacity (in bps) of primary channel belonging to 

PBi. 

Note, that for any } ,...,2 ,1{ }, ,...,2 ,1{ mjni   at any time slot t the 

values Q
P

i(t), Q
S

j(t), A
P

i(t), A
S

j(t) can be observed in respective PBi/SBj. 

Also, the total number of bits served by a primary channel cannot 

exceed it maximum service capacity, i.e.: 

niCtXtX i

m

j

S

ij

P

i  ..., 1,  ,)()(
1




  (67) 

Ideally, CRN should allocate the service rates X
P

i(t) and X
S
ij(t) in 

order to maximize the quality of service (QoS) for the users of PBs and 

SBs, and preserve the service priority of PBs in their channels. One 

way to achieve this goal is to perform the service rate allocation 

separately for primary and secondary base stations using a two-stage 

procedure. In the first stage we allocate the service rate for all PNs 

within CRN to maximize the QoS for primary network users. Then, the 

unused service capacity of the primary channels can be distributed 

among SBs. 

In this work we propose to allocate the service rates X
P

i(t), X
S

ij(t) 

based on the size of the queues Q
P

i(t + 1) and Q
S

j(t + 1). Thus, to 

maximize the QoS for the users of SBs and PBs and maintain the 

service priority of PBs, we should first minimize Q
P

i(t + 1) and Q
S

j(t + 

1) for all PBs. Then utilize the unused service capacity such that Q
S

j(t + 

1) is minimized.  
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The queue size was chosen as an optimization target because it is 

directly connected to the main QoS metrics, such as round-trip latency 

and loss. However, the analysis and estimation of these metrics in 

wireless networks is rather complex, and leads to very difficult 

optimization problems, whereas Q
P

i(t + 1) and Q
S

j(t + 1) can be easily 

estimated from the known values Q
P

i(t), Q
S

j(t) and A
P

i(t), A
S

j(t) using 

Lindley’s equation [80]: 

  nitXtAtQtQ P

i

P

i

P

i

P

i  ..., 1,  ,)()()()1( 
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  (69) 

where: 

  ),0max( xx 


  (70) 

In (68) and (69) the service rates X
P

i(t), X
S

ij(t) should be allocated, 

while the values of Q
P

i(t), Q
S

j(t) and A
P

i(t), A
S

j(t) are observed in all 

PBi, SBj at any time slot t.  

We propose to allocate X
P

i(t) such that Q
P

i(t + 1) is minimized. Thus, 

from (68) it is straightforward to verify that 
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In practice, the network is not fully loaded most of the time. Hence 

we would have Ci > X
P

i(t) for some values of i. This allows the 

corresponding primary eNBs to serve some secondary users. The 

service rates for the secondary users are determined by solving a 

minimax problem. Define the unknown service rate allocation vectors 

as 
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and the function 
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We propose to compute X
S
 by solving the optimization problem 
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 (74) 

The problem (74) is a convex. It is possible to solve (74) in 

polynomial time using some interior point method. These are true when 

the components of X
P
 and X

S
 are allowed to take real numbers. In 

reality, however, for LTE the components of X
P
 and X

S
 are not allowed 

to take arbitrary real values [169]. This complicates the problem to 

some extent. Nevertheless, we can use the methods of convex 

optimization and integer programming to efficiently solve the resulting 

optimization problems. 

3 Resource Allocation in LTE System 

To facilitate the description of the proposed resource allocation 

approach, recall that the main transmission unit over the air interface in 

an LTE system is called a resource block pair. Each resource block pair 

has a duration 1ms and is made up of 12 subcarriers, or 180 kHz. The 

peak service capacity of a resource block depends on the antenna 

configuration, modulation and coding scheme and the type of cyclic 

prefix (normal or extended) used in the system. More detailed 

description of the peak data rate calculation in LTE system can be 

found in [169].  

For 2 × 2 MIMO channel with 64 QAM modulation and normal 

cyclic prefix the downlink peak data rate of one resource block pair is 

equal 1.47 Mbis/s. The corresponding uplink peak data rate of the 

resource block pair (1 × 2 MIMO channel with 64QAM modulation 

and normal cyclic prefix) is equal to 0.74 Mbits/s [169]. The number of 

resource blocks corresponding to different spectrum bands in LTE 

system has already been provided in Table 5 (Chapter 3). The uplink 
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and downlink peak data rate corresponding to different spectrum bands 

is shown on Figure 59. 

 

Fig. 59. Peak data rates for different channel bandwidth in standard LTE system [169] 

Given the bandwidth of the primary channel of PBi, we can find the 

corresponding number of resource blocks Ni. In LTE the resource 

allocation can be performed only in terms of resource blocks. Thus, at 

any time slot an eNB can allocate only integer number of resource 

blocks to each user. 

3.1 Algorithm 1 (for Light and/or Smooth Network Traffic) 

Basia Idea 

Let ci be the peak data rate of one resource block of PBi. Let x
P

i(t) be 

the number of resource blocks allocated to the primary users in PBi. 

Then  

niNcCtxctX iii

P

ii

P

i ,...,1   ,   ),()(   (75) 

Similarly, if x
S

ij(t) is the number of resource blocks that PBi shares 

with SBj at time slot t, then 
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mjtxctX S

iji

S

ij ,...,1   ),()(    (76) 

According to our strategy described before we allocate x
P

i(t) in order 

to minimize Q
P

i. Thus denoting 
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it is straightforward to verify that 
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In practice, often we would have spare capacity, i.e. ii NN   will 

hold for many values of i. Then we can utilize the spare capacity to 

serve the secondary users. To find the individual allocations, we solve 

(74) subject to the constraint that x
S

ij(t) is an integer. Define the 

unknown service rate allocation vectors 
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and the function 
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Then we compute x
S
(t) by solving the optimization problem 
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In (81) Z
+
 denotes the set of non-negative integers. The 

corresponding resource allocation algorithm is fomulated as follows. 

For each time slot t: 

1. All SBs/PBs collect and send the values Q
P

i(t), Q
S

j(t) and A
P

i(t), A
S

j(t) 

to CNM; 

2. CNM calculates and sends the optimal integer solutions x
P

i(t), x
S

ij(t) 

to all SBs/PBs; 

3. The resources of the primary channel belonging to PBi are shared by 

the PBi which occupies x
P

i(t) resource blocks, and SB(s) which 

occupy x
S

ij(t) resource blocks. 

Solution Methodology 

In theory, (81) is a hard integer programming problem due to integer 

restrictions on x
S

ij(t). Nevertheless, many efficient methods for solving 

such integer programming problems exist. Here we propose to solve 

(81) as follows. First, we relax integer restrictions on x
S

ij(t), and solve 

the convex problems given by 
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Let )(tS
x  be the solutions of the problem (82). Note, that the 

components )(tx
S

ij  of the vector )(tS
x  are in general non-integer. Then 

we use  )(tx
S

ij  to initialize a branch and bound algorithm to solve 

(81). It is straightforward to verify that such initialization does satisfy 

the constraints in (81).  

Because (82) is a convex problem, we can compute )(tS
x  very 

quickly using some interior point method. By initializing the branch 

and bound method at  )(tx
S

ij  we are already very close to the solution 

of (81). Hence, we can expect a quick convergence.  

Next, we show that (82) can be solved by solving an integer linear 

programming problem. Note, that (82) is equivalent to 
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In (83) the constraint )}({ tfy S
x  holds if and only if (see (70), 

(80)): 
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Hence, (83) is equivalent to the linear programming problem 
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Any standard linear program solver can be used to solve the problem 

(85). In our simulations we have used the primal-dual interior point 

[165] method.  

3.2 Algorithm 2 (for Heavy and/or Bursty Network Traffic) 

Basia Idea 

When the traffic is heavy and bursty, then the value of A
S

j(t) and 

A
P

i(t) may vary significantly from one time step to next time step. For 

this reason it is often useful to predict what could happen in future, and 
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somehow incorporate this knowledge in the resource allocation 

algorithm. In this way we can reduce the possibility of getting 

‘surprizes’ when the size of some queue start to build up suddenly. The 

philosophy of our allocation strategy is to predict such events and take 

necessary actions ahead in time to make provisions for sudden bursts. 

Suppose, that at any time slot t given the past values of the arrival 

rates A
P

i(t - k), A
S

j(t - k), k = 0, 1, 2, … we can make a sequence of 

predictions l
k

S

j

P

i tktAtktA
1

)|(ˆ),|(ˆ


 for the time period of the certain 

length l ≥ 1 time slots. The notation )|(ˆ),|(ˆ tktAtktA S

j

P

i  should be 

read as “the predicted value of A
P

i(t + k), A
S

j(t + k) computed at time t 

using the observations up to time point t”. To generate predictions in 

this work we used PLR prediction technique applied with AR time-

series model (which have been described in Chapter 1). 

Here and after we refer to l as the ‘prediction horizon’. Here at any 

timeslot t we compute the optimal allocations l
k

S

ij

P

i ktxktx
0

)(),(


 by 

solving an optimization problem. This optimal solution accounts for 

possible events in future within the prediction horizon. Then we 

implement only x
P

i(t) and x
S

ij(t), and move on to the next time step. In 

this way the allocations become future-aware, and are somewhat 

immuned to some future events which could cause problems otherwise. 

This idea of future aware allocation is similar to reinforcement learning 

[161] and model predictive control [160], popular in machine learning 

and automatic control, respectively. 

In the following the notation x
P

i(t + k|t), x
S

ij(t + k|t) denote the value 

of x
P

i(t + k), x
S

ij(t + k) computed based on the result of optimization run 

at time t. As before, our strategy is to minimize the largest queue sizes 

in some way, but in this case we consider the queue sizes over the 

whole prediction horizon. We start by making allocations for the 

primary users. By using the predicted value )|(ˆ tktAP

i   in Lindley’s 

equation [80] recursively for 1 ≤ k < l, we can compute prediction Q
P

i(t 

+ k + 1|t) of the primary queue size Q
P

i(t + k) based on the information 

available at time t as 
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  (86) 

Note that Q
P

i(t + k + 1|t) is an implicit function of the allocations x
P

i(t 

+ k|t), k = 0, 1, …, l. We tune  l
k

P

i tktx
0

)|(


  to minimize the primary 

queue lengths. Define 
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Then the pedicted queue lengths are minimized when we take 

 
ni

tktN

NtktNN
tktx

i

iiiP

i ,...,1   ,
otherwise,)|(

)|( if,
)|( 








  (88) 

This is important to recongnize that computation of  l
k

P

i tktx
0

)|(


 is 

recursive in k. First we compute x
P

i(t|t), which is essentially same as in 

(77). This value allows us to calculate Q
P

i(t + 1|t) in (86), which then 

gives x
P

i(t + 1|t) using (88). Now using (87), we can find Q
P

i(t + 2|t) to 

get x
P

i(t + 2|t) using (88), and so on. 

Once the primary allocations are found, we can make secondary 

allocations using the spare capacity. Computation of the secondary 

allocations involves computing the vector X(t) defined (in steps) as 

follows: 
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If we write c = [c1, c2, …, cn]
T
, then note that 
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We compute X(t) in such way that the largest secondary queue size 

over the prediction horizon l is minimized. To see the details, first 
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apply Lindley’s equation [80] recursively for 1 ≤ k < l  to obtain the 

following prediction of Q
S

j(t + k + 1|t): 

 
lkmj
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From (91), Q
S

j(t + k|t) is a function of X(t). However, we don’t show 

that explicitly to simplify the notation. Let us define J = {1, 2, …, m} 

and K = {1, 2, …, l}, and 

)|(max)}({
,

tktQtg S

j
jk


 JK

X   (92) 

so that g{X(t)} denotes the largest size a secondary queue attainED 

over the prediction horizon l. Let us denote I = {1, 2, …, n}. Then we 

propose to compute X(t) by solving the following optimization 

problem: 
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Solution Methodology 

In this section we show that (93) is equivalent to integer linear 

program. The first step in this derivation is to write (93) as 
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Next we show that the constraint )}({ tg X  is equivalent to a set 

of linear inequalities in X(t). 
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Lemma 1. Let us define 

)|()|(ˆ),( tpttptApt S
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S
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Then )|( tktQS

j   if and only if all inequalities 

0   (96) 

)1,(  ktj   (97) 

)1,()2,(  ktkt jj    (98) 

: 

)1,()2,(...)1,(  ktktt jjj   (99) 

)1,()2,(...)0,()(  ktktttQ jjj

S

j   (100) 

hold. 

Proof: From (70) and (91), the inequality 

)|( tktQS

j    (101) 

holds if and only if both the inequalities 

0   (102) 

)1,()1(  ktktQ j

S

j    (103) 

hold. Using (70), (91) and (95), we have 
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From (104) we get 
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Thus, (103) is equivalent to both the inequalities 

)1,(  ktj   (106) 

)1,()2,()2(  ktktktQ jj

S

j   (107) 

By continuing like above we get the set of inequalities (96) – (100). 

      □ 

Let us write (96) – (100) compactly as 
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Using (92) we see that the constraint )}({ tg X  in (109) is 

equivalent to the set of inequalities given by 
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By replacing )}({ tg X  by (109) in (94) we reduce (94) into 

equivalent integer linear problem, which can be solved efficiently using 

the branch and bound algorithm.  

4 Algorithm Performance 

In this section we present the summary of algorithm performance 

based on results of simulations obtained using OPNET development 

tool [112]. The simulation model consists of n = 3 primary eNBs and m 

= 1, 3 secondary eNBs connected to the EPC using 1Mbits/s IP links.  

In the model, the CNM functionalities are implemented in EPC. The 

primary eNBs operate on fixed non-overlapping licensed spectrum 
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bands b1 = 5MHz, b2 = 10MHz, b3 = 20 MHz. The radio model of the 

network has been developed according to the ITU-T Recommendation 

M.1225. Other simulation parameters have been set in coherence with 

the requirements of the LTE specifications [167, 169] (the simulation 

parameters of the network model are listed in Table 15). 

The user traffic in simulations is made up of three most common 

network applications: VoIP, video and HTTP. The following models 

have been used to simulate voice, video and web users: 

 The VoIP services model is ON-OFF model with exponentially 

distributed ON-OFF periods. The mean duration of ON and OFF 

periods are 0.65s and 0.352s, respectively. The VoIP traffic is 

generated by using the G.723.1 (12.2 Kbps) codec with a voice 

payload size 40 bytes and a voice payload interval 30 ms [167]. 

 Video services are simulated using a high resolution video model 

with a constant frame size equal 6250 bytes and exponentially 

distributed frame inter-arrival intervals (with mean equal 0.5s) [167]. 

 Web users in simulations are HTTP1.1 users generating pages or 

images with exponential page inter-arrival intervals (mean equal 

60sec). It is assumed that one page consists of one object, whereas 

one image consists of five objects. The object size is constant and 

equal 1000 bytes [167]. 

In the standard LTE system the time axis is partitioned in time 

intervals of the length 1 ms [169]. However, in cognitive LTE network 

the slot duration should be much longer, considering that within one 

time slot i) the secondary eNBs should be able to re-adjust to the 

allocated frequency bands; ii) the network should establish reliable data 

transmission between the eNBs and the users (that is, the slot duration 

should be comparable to the mean duration of user sessions in the 

network). Based on these considerations, the slot duration in simulation 

model is set to be Ts = 1 sec. 
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Table 15. Simulation Parameters of the Network Model 

Parameter Value 

Radio Network 

Model: 

Pass loss 49log30log40
1010

 fRL , 

 R – distance (km),  

f – carrier frequency (Hz) 

Shadow fading Log-normal shadow fading with a 

st. dev. of 10/12 dB for 

outdoor/indoor users 

Penetration loss The average building penetration 

loss is 12 dB with a st. dev. 

of 8 dB 

Multipath fading SCM, Suburban macro 

Cell radius 1 km 

UE velocity 0 km/s 

Tx/Rx antenna gain 10 dBi (pedestrian),  2 dBi (indoor) 

Rx antenna gain 10 dBi (pedestrian),  2 dBi (indoor) 

Rx noise figure 5 dB 

Thermal noise density –174 dBm/Hz 

Cable/connector/combiner 

losses 

2 dB 

PHY profile: Operation mode FDD 

Cyclic Prefix Type Normal (7 Symbols per Slot) 

EPC Bearer Definitions 348kbit/s (Non-GBR) 

Carrier frequency 2GHz 

Subcarrier spacing 15kHz 
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Admission 

Control 

Parameters: 

PDCCH symbols per 

subframe 

3 

UL Loading Factor 1 

DL Loading Factor 1 

Inactive Bearer Timeout 20 sec 

BSR 

Parameters: 

Periodic Timer 5 subframes 

Retransmission Timer 2560 subframes 

L1/L2 Control 

Parameters: 

Reserved Size 2 RBs 

Cyclic Shifts 6 

Starting RBP for Format 1 

messages 

0 

Allocation Periodicity 5 subframes 

RACH 

Parameters: 

Number of Preambles 64 

Preamble Format Format 0 (1-subframe long) 

Number of RA Resources 

per Frame 

4 

Preamble Retransmission 

Limit 

5 subframes 

RA Response Timer 5 subframes 

Contention Resolution 

Timer 

40 subframes 

HARQ 

Parameters: 

Max Number of 

Retransmissions 

3 (UL&DL) 

HARQ Retransmission 

Timer 

8 subframes (UL&DL) 
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Maximal Number of HARQ 

processes 

8 per UE (UL&DL) 

 

Considering that the acceptable prediction error should not exceed 

0.1%, the length of the prediction window in Algorithm 2 has been set 

to be equal l = 5 time slots. This value was set after conducting a 

number of simulations with traffic sources listed above. Figure 59 

summarizes the prediction performance as a function of traffic 

peakedness Z for l = 2, 4, …, 10 time slots. We use mean absolute 

percentage error [172] 







T

t tA

tAtA

T
MAPE

1 )(

)(ˆ)(%100
  (110) 

to measure the accuracy of prediction, where A(t) and )(ˆ tA are the 

actual and predicted arrived traffic at time slot t, respectively; T is the 

length of simulation (in time slots).  

 

Fig. 59. Plot of MAPE as a function of Z for different values of l 

Traffic peakedness Z is defined as the variance to mean ratio of the 

traffic distribution A(t) [168], i.e. 



 

 

 

  

 

 

166 

)}({

)}({

tAMean

tAVar
Z    (111) 

If Z < 1 then the traffic is said to be smooth. Otherwise (if Z > 1), the 

traffic is peaked (bursty) and random [168]. 

To facilitate a fair and comprehensive analysis, we compare the 

performance of the proposed algorithm with the performance of two 

most relevant spectrum access techniques applicable to the considered 

system model. These techniques are: 

1. cognitive radio resource management scheme for improving the 

LTE efficiency described in [170], and 

2. dynamic bandwidth access scheme through pricing modeling 

described in [171]. 

In the first scheme the spectrum is assumed to be discrete. The total 

available bandwidth is divided into a number of sub-carriers. The sub-

carriers are assigned to eNBs users to maximize the aggregated 

logarithmic utility given as a function of the bit rate at eNBs. Within 

the time slot one sub-carrier can be assigned to at most one eNB [170].  

In the second scheme a number of PBs provide the wireless access to 

a number of SBs based on their utility function. The user utility is 

represented by the function depending on three parameters: 1) the 

amount of bandwidth which PB is willing to share with SB, 2) the 

signal to interference ratio of the wireless channel between the SB and 

PB and 3) the offered price for the bandwidth unit [171].  

Here and later in the paper we use the following notation to 

differentiate between different algorithms: 

 RBA (or rate based allocation) for the scheme described in [170]; 

 PBA (or price based allocation) for the scheme described in [171]; 

 QBA 1 (or queue size based allocation, Algorithm 1) proposed in this 

paper. 

 QBA 2 (or queue size based allocation, Algorithm 2) with l = 5 

proposed in this paper. 

To evaluate performance of the proposed algorithms, a number of 

scenarios have been simulated with varying load and traffic peakedness 

and with different number of secondary eNBs. Description of these 

scenarios is summarized in Table 16. The traffic sources used in 

simulations have been listed in the beginning of this section.  
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Table 16. Simulated Scenarios 

Scenario # n m Z Users per eNB 

Scenario 1 3 1 0.6 (smooth traffic) 10 (low) ÷ 100 (high load) 

Scenario 2 3 3 0.6 (smooth traffic) 10 (low) ÷ 100 (high load) 

Scenario 3 3 1 0.2 (smooth)  ÷ 2 (bursty traffic)  100 (high load) 

Scenario 4 3 3 0.2 (smooth)  ÷ 2 (bursty traffic)  100 (high load) 

 

Performance of the network (evaluated in terms of mean packet end-

to-end delay and loss) for different scenarios is shown on Figures 60 - 

65. In particular, the delay and loss for the users of primary eNBs are 

plotted on Figures 60, 61. Note that the packet delay and loss in PBs do 

not depend on the number of SBs in the network. These results 

demostrate that: 

 RBA shows the worst performance for the users of primary eNBs in 

all simulated scenarios. Service performance of RBA highly depends 

on the load in eNBs (packet delay and loss increase steeply in 

Scenarios 1 and 2). The impact of the traffic bursiness on service 

performance of RBA is much less. 

 PBA has better performance than RBA. PBA is highly influenced by 

the traffic burstiness and in much less degree by the load in eNBs. 

 Both QBA1 and QBA2 outperform the other schemes in all 

simulatied scenarios. QBA1 shows slightly better performance than 

QBA2 in scenarios with smooth traffic (Scenarios 1 and 2). QBA2 

outperforms QBA1 when Z ≥ 1, i.e. with bursty random traffic. 

Figures 62 - 65 demonstrate the network performance for the users of 

secondary eNBs. As expected, the packet delay and loss for the users of 

SBs increases if we increase the number of SBs. Results also show that: 

 Performance of RBA for the users of secondary eNBs is almost the 

same as for the users of primary eNBs in all simulated scenarios. 

 PBA show the worst performance than all other schemes. 
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 Both QBA1 and QBA2 outperform the other schemes. QBA2 shows 

somewhat better performance than QBA1 in all simulated scenarios 

(i.e. regarless of the load and the traffic peakedness in eNBs). 

Based on above observations we can summarize the performance of 

proposed resource allocation algorithms as follows. Both QBA1 and 

QBA2 are highly effective in reducing delay and loss for the users of 

secondary and primary eNBs. For primary eNBs, QBA1 shows slightly 

better performance that QBA2 with smooth traffic (Z = 0.6). With 

bursty traffic (Z ≥ 1) QBA2 outperforms QBA1. For secondary eNBs, 

QBA2 shows better performance than QBA1 in all scenarios regarless 

of the load and traffic burstiness in the network. 

 

Fig. 60. Mean packet end-to-end delay and loss for users of PBs in scenarios 1 and 2 

 

Fig. 61. Mean packet end-to-end delay and loss for users of PBs in scenarios 3 and 4 
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Fig. 62. Mean packet end-to-end delay and loss for users of SBs in scenario 1 

 

Fig. 63. Mean packet end-to-end delay and loss for users of SBs in scenario 2 

 

Fig. 64. Mean packet end-to-end delay and loss for users of SBs in scenario 3 
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Fig. 65. Mean end-to-end delay and packet loss for users of SBs in scenario 4 
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CHAPTER 8: Delay Aware Resource Allocation for 

Secondary Users in Cognitive LTE Network 

In this chapter a resource allocation technique for a cognitive LTE 

network in Scenario 3 is presented. Description of the network 

deployment scenario, as well as previous research on resource 

allocation for LTE-based CRN in Scenario 3 had already been 

summarized in Overview of this thesis. Here we formulate the 

optimization problem for resource allocation, derive the corresponding 

DSA algorithm, and summaries the algorithm performance based on 

simulation model developed in OPNET environment [112]. The 

corresponding paper will appear in Proceedings of IEEE MASS, 

October 2014. 

1 Introduction 

In this paper we consider a problem of dynamic spectrum access 

(DSA) in the Third Generation Partnership Project (3GPP) long-term 

evolution (LTE) cognitive radio network (CRN) architecture where the 

wireless access is provided to the primary (licensed) and secondary 

(unlicensed) users according to some predetermined policy. Within a 

CRN the primary users (PUs) get the ultimate prioritized access to 

licensed spectrum bands, whereas the secondary users (SUs) are served 

on the best-effort (non-prioritized) basis.  

Unlike the other related techniques where the licensed spectrum 

bands have been assigned to SUs based on external network 

characteristics (such as signal to noise ratio, interference, traffic load, 

bit rate, throughput, etc.), we focus on specific design features of LTE 

radio interface associated with the scheduling process and the limited 

control channel capacity of the LTE system. In particular, we 

investigate the reasons limiting the capacity of the system on physical 

(PHY) and medium access control (MAC) layers, and find the relation 

between the scheduling delay (which comprises the largest part of the 

packet end-to-end delay in LTE network) and the number of users in 

the system.  
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Based on these results, we derive a simple technique to assign the 

spectrum for SUs without violating the QoS requirements of PU, and 

implement this algorithm in LTE-based CRN. We verify the consistent 

performance of the proposed algorithm by comparing its performance 

with the performance of other relevant DSA techniques. 

This Chapter is organized as follows. In section 2 we formulate the 

optimization problem for resource allocation and derive the relation 

between the sceduling delay and the number of users in LTE system. In 

section 3 we present the proposed algorithm for dynamic spectrum 

access in LTE-based CRN. The algorithm performance is evaluated in 

section 4. 

2 Optimization Problem 

2.1 Problem Formulation 

Consider a typical cognitive radio network (CRN) model based on 

LTE standard network illustrated on Figure 6. It comprises a core 

networking part and m service providers (SPs) offering the wireless 

services via a set of respective evolved NodeBs (eNBs) numbered 

eNB1, ..., eNBm. Similar to the standard LTE system, considered 

network model operates on a slotted time basis: the time axis in the 

model is partitioned into discrete mutually disjoint intervals of length Ts 

{[tTs, (t+1)Ts]} , t = 0, 1, 2, …., with Ts denoting the subframe (in LTE 

Ts = 1ms), and t denoting the integer values index of Ts. 

A CRN provides the wireless access to N primary users (PUs) and X 

secondary users (SUs). PUs are the licensed network users who pay 

some prize to their SPs for accessing the wireless services. SUs are 

unlicensed network users who can access the wireless services for free.  

Each eNB operates on a fixed licensed spectrum band and serves a 

number of PUs, randomly arriving to (and leaving) the network with 

mean arrival rate λPU (and mean departure rate μPU). We denote the 

spectrum band of the eNBi by bi, and the instantaneous number of PUs 

in eNBi by ni. The eNBs can also provide the wireless access to SUs, 

randomly arriving to (and leaving) the network with mean arrival rate 

λSU (and mean departure rate μSU). Within a CRN the PUs get 

prioritized access to the spectrum band of SP (eNB) they have arrived 
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to. The SUs are served on the best-effort (non-prioritized) basis and can 

be redirected to the other SP (eNB). 

We assume that:  

1. one SU can connect to at most one eNB;  

2. the mean inter-arrival times of PUs and SUs (and the mean inter-

departure times of PUs and SUs) are much greater than the subframe 

duration, i.e. 1/λPU >> Ts, 1/λSU >> Ts, μPU >> Ts, μPU >> Ts, which is 

quite reasonable because in real network the mean inter-arrival times 

(and the mean inter-departure times) of the users are usually much 

greater than Ts = 1ms; 

3. the spectrum bands of eNBs are non-overlapping. 

The main goal of the considered CRN is two-folded. Firstly, it should 

provide the wireless access for SUs. Secondly, it should maintain some 

QoS levels of PUs. Considering, that the QoS for most of the user 

applications is measured in terms of the packet end-to-end delay, this 

goal can be reformulated as follows. Maximize the number of SUs in m 

eNBs given that the packet end-to-end delay in eNBs does not exceed 

some predefined limits.  

Let xi be the number of SUs assigned to eNBi. Let Di be the average 

packet end-to-end delay (i.e. the time it takes for a packet to travel from 

the user through the network to the server, and back) in eNBi. Let D
P

i 

be the maximum value of the packet end-to-end delay acceptable for 

eNBi. Then the corresponding optimization problem for the CRN 

model illustrated on Figure 6 is given by 

mixx

Xx

miDD

xxf
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i

i
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where x = [x1,…,xm]
T
 is the vector of non-negative numbers. 
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To solve the problem (112), we should find the relation between the 

number of users and the packet end-to-end delay in LTE system. 

According to [93], the packet end-to-end delay in LTE system is equal: 

PSHARQcUEeNBpbt DDDDDDDDD   (113) 

where D
t
, D

b
, D

p
 – are the total (uplink and downlink) packet 

transmission, buffering and propagation delays between the UE and the 

eNB, respectively; D
HARQ

 – the total (uplink and downlink) packet 

delay due to hybrid automatic repeat request (HARQ) retransmissions; 

D
PS

 – the uplink delay due to packet scheduling; D
eNB

 and D
UE

 – 

processing delays of eNB and the user equipment (UE); D
c
 – the total 

(uplink and downlink) packet delay in core network. Figure 66 shows 

the typical values of different delay components in LTE network [93]. 

 

Fig. 66. The typical values of different delay components 

Because of the small size of the subframe (the subframe duration in 

LTE is equal Ts = 1 ms), the transmission and the buffering delay 

components D
t
 and D

b
 are very small in LTE system (D

t
 = 2 ms, D

b
 = 1 

ms). The propagation delay D
p
 and the delay in core network D

c
 depend 

on the distance between the UE and the eNB, and the eNB and the 

server, relatively, and usually in orders of 1 ms (in case if the distance 

between the UE and the server does not exceed 1000 km). The 
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components D
eNB

 and D
UE

 depend on the processing capabilities of the 

equipment (typically around 5 ms) [93]. 

The delay due to HARQ retransmissions depends on the wireless 

channel quality. The average value of D
HARQ

 can be estimated using 

[93]: 

HARQRTXHARQ TPD    (114) 

where P
RTX

 is the probability of the HARQ retransmission; T
HARQ

 – the 

time interval between the transmission and respective HARQ 

retransmission (in LTE standard T
HARQ

 = 8 ms). It follows from (114) 

that delay due to HARQ retransmissions never exceeds 8 ms (in general 

D
HARQ

 < 4 ms) [93].  

The delay component D
PS

 is associated with the scheduling process 

in LTE system. The packet scheduling allows provide the guaranteed 

wireless channels and maintain some QoS levels for the prioritized 

network users. On the other hand, the scheduling procedure itself 

introduces an additional delay for all types of the network users 

(prioritized and non-prioritized). In LTE the delay due to scheduling is 

relatively large (in general D
PS

 ≥ 8 ms) and constitutes the biggest part 

(≈36%) of the packet end-to-end delay. Unlike the other delay 

components, the scheduling delay depends on the number of users in 

eNB [93, 94]. 

We now return to the primary optimization problem given by (112). 

Combining (112) and (113), we get the following more detailed 

formulation of the primary problem: 
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In (115) Di
t
, Di

b
, Di

p
, Di

c
, Di

eNB
, Di

UE
, Di

HARQ
 do not depend on xi and 
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can be directly measured at eNBi (Di
t
, Di

b
, Di

p
, Di

c
, Di

eNB
, Di

UE
 are 

constants, Di
HARQ

 depends on the number of HARQ retransmissions in 

eNBi). The only delay component which depends on xi and should be 

restricted in optimization problem is Di
PS

.  

For convenience let us define 

HARQ

i

c

i

UE

i

eNB

i

p

i

b

i

P

i

P

i DDDDDDDD  :  (116) 

Expression (116) is equivalent to the maximum acceptable 

scheduling delay. Using (116), the optimization problem (115) can be 

redefined as follows 
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Clearly, to solve (117), it is important to find the relation between the 

scheduling delay and the number of users in LTE system. 

2.2 Scheduling Delay and the Number of Users in eNB 

In this subsection we find the relation between the scheduling delay 

and the number of users in eNB. We start from the brief description of 

the scheduling process in LTE system (more detailed description of the 

scheduling process can be found for instance in [158]). 

In LTE resources are allocated to user equipments (UEs) for uplink 

and downlink data transmission in terms of RBs. Thus, one UE can be 

allocated only the integer number of RBs in frequency domain, and 

these RBs do not have to be adjacent to each other. Resource allocation 

(scheduling) is carried by the MAC layer packet scheduler in the eNB 

both for uplink and downlink transmissions [157].The scheduling 

decisions are made based on the quality of service (QoS), user priority, 

fairness and instantaneous channel conditions.   
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The standard dynamic packet scheduling scheme can be described as 

follows [157]. Within one subframe with duration equal Ts = 1ms: 

1. all active UEs generate the scheduling requests (SRs) and send them 

via the physical uplink control channel (PUCCH) to eNB using the 

format 1 messages.  

2. the eNB receives the PUCCH information, decodes the PUCCH 

format 1 messages, allocates the resources and sends the scheduling 

grants (SGs) to UEs via the physical downlink control channel 

(PDCCH) using the downlink control information (DCI) format 1 

messages. The duration of this procedure is equal TSR = 4ms. 

3. UEs receive the PDCCH information, decode the DCI format 1 

messages, and transmit the uplink data via the physical uplink shared 

channel (PUSCH). This procedure takes exactly TSG = 4ms. 

Because of the finite capacity of the PDCCH and PUCCH, the 

scheduler is constrained in its freedom of how many users to address in 

a subframe [131]. Thus, if the number of scheduling requests (SRs) sent 

in one subframe is not more than the PDCCH/PUCCH capacity, all 

UEs generating SRs are scheduled and can transmit the uplink data. 

Otherwise, i.e. if the number of scheduling requests (SRs) sent in one 

subframe is more than the PDCCH/PUCCH capacity, the scheduling 

for some UEs generating SRs will be delayed for the next subframe 

[94, 131].  

To estimate the scheduling delay D
PS

 consider a cell consisting of a 

number of UEs and a eNB. We assume that all UEs in the cell are 

active all of the time and the number of UEs generating SRs in one 

subframe NSR is equal to the number of UEs in the cell. Let C
CCH

 be the 

control channel capacity, i.e. the number of UEs that can be scheduled 

in one subframe. If NSR ≤ C
CCH

 then all UEs in time (8ms after sending 

the respective SR) [94]. The scheduling delay for all UEs in the cell in 

this case is equal: 

SGSR

PSCCH

SR TTDthenCNif        (118) 

If NSR > C
CCH

 then exactly C
CCH

 UEs are scheduled in time, while the 

left (NSR - C
CCH

) UEs are delayed for the next subframe [94]. The 

average scheduling delay for all UEs in the cell in this case is equal: 



 

 

 

  

 

 

178 













SR
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sSGSR

PSCCH
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N

C
TTT DthenCNif 1      (119) 

Combining (118) and (119) we get the expression for the average 

scheduling delay in LTE system: 













SR

CCH

sSGSR

PS

N

C
TTT D 1    (120) 

where   },0max{ xx 


. 

For the network model shown on Figure 6 the total number of users 

in eNBi is equal ni + xi. Then the number of SRs sent in one subframe is 

equal to the number of active users in eNB NSR  = ni + xi by assumption.  

In LTE, the value of C
CCH

 can be determined from the bandwidth of 

the respective eNB denoted via bi. Recall that SRs are carried via the 

PUCCH using the PUCCH format 1 messages; SGs are carried via the 

PDCCH using the DCI format 1 messages. Thus, for eNBi the capacity 

of physical control channels in uplink direction is equal to the number 

of PUCCH sub-channels allocated for PUCCH format 1 messages 

denoted via Ni
PUCCH_1

. The PDCCH capacity of eNBi is equal to the 

number of control channel elements Ni
CCE

 allocated for the DCI format 

1 messages [94]. Then the PDCCH/PUCCH capacity of eNBi is equal: 

},min{ 1_ CCE

i

PUCCH

i

CCH

i NNC    (121)  

The average scheduling delay in eNBi is equal: 
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And the problem (117) will take the form: 
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3 DSA Algorithm for LTE-based CRN 

In this section we present the example of the algorithm 

implementation in cognitive LTE-based network architecture. The 

objective of the algorithm is to assign the spectrum to the maximum 

possible number of SUs subject to certain delay constraints established 

in eNBs.  

We assume that SPs operate on fixed non-overlapping licensed 

spectrum bands b1, …, bm, and the number of available control C1
CCH

, 

…, Cm
CCH

 remain constant. To track the number of PUs and SUs in the 

proposed CRN model we utilize the modified version of the standard 

LTE RACH procedure [158] described as follows. For initial access to 

the network (i.e. at arrival) the PU/SU generates a Primary/Secondary 

service Initiation Request (PIR/SIR) and sends it in the form of RA-

preamble using the spectrum band of any eNB within CRN using the 

RACH procedure. When the PU/SU leaves the network, it generates a 

Primary/Secondary service Termination Request (PTR/STR) and sends 

it in the form of RA-preamble to respective eNB using the RACH 

procedure.  

One of the primary assumptions of the network model was that the 

mean inter-arrival times of PUs and SUs (and the mean inter-departure 

times of PUs and SUs) are much greater than the subframe duration, i.e. 

1/λPU >> Ts, 1/λSU >> Ts, μPU >> Ts, μSU >> Ts. Based on this 

assumption, we propose to make each subsequent spectrum allocation 
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within the time interval ∆t which is less that mean inter-arrival times of 

PUs and SUs (and the mean inter-departure times of PUs and SUs), but 

greater than the subframe duration, i.e. Ts < ∆t < 1/λPU, Ts < ∆t < 1/λSU, 

Ts < ∆t < μPU, Ts < ∆t < μSU. This will allow decrease the amount of 

signaling without affecting the algorithm performance. 

In CRN all PUs have the prioritized access to all spectrum 

bands/eNBs comprising the network and therefore they get an 

immediate access to any spectrum band/eNB. SUs can operate only on 

the spectrum bands/eNBs that have been allocated to them according to 

the algorithm that can be briefly described as follows (more detailed 

description of the algorithm is presented on Figure 67).  

Within each time interval ∆t:  

 All SUs/PUs arriving to the network generate PIRs/SIRs and send 

them to any eNB within the network. All SUs/PUs leaving the 

network generate PTRs/STRs and send them to the eNB which they 

are leaving. 

 The eNBs collect all received PIRs, PTRs, SIRs and STRs (we 

denote all PIRs, PTRs, SIRs and STRs received by the eNBi via 

PIRi(t), PTRi(t), SSRi(t) and STRi(t), respectively), update the number 

of PUs and SUs, and send them to EPC. 

 After receiving PIRi(t), PTRi(t), SSRi(t) and STRi(t) from all eNBs, 

the EPC finds the optimal solution to problem (12) given by x
*
 = [x

*
1, 

…, x
*

m]
T
. After this, the EPC redirects the SUs by sending the index 

and the number of admitted SUs to all eNBs within the network.  

 At each eNB if x
*

i - xi(t) ≥ 0 then all SUs are granted the access. 

Otherwise, the eNB accepts x
*

i SUs and redirects xi(t) - x
*

i SUs to the 

admitting eNBs. 

 After being located (i.e. accepted or redirected) in the network, the 

SUs get the wireless access to the spectrum bands of admitting eNBs. 
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March 25, 2013

Page 1

Title
Algorithm 1. DSA Algorithm for LTE-based CRN

At time t 

   PUs/SUs arriving to the cell send PIR/SIR to any eNBi in {1, ..., m}, 

   PUs/SUs leaving the cell send PTR/STR to eNBi in {1, ..., m},    

   At all eNBi in {1, ..., m}

      1. Update PIRi(t), PTRi(t), SIRi(t), STRi(t)

      2. Count ni(t) := ni(t-∆t) + PIRi(t) - PTRi(t), 

                         xi(t) := xi(t-∆t) + SIRi(t) - STRi(t),

      3. Send ni(t), xi(t) to EPC

   At EPC

      1. Receive ni(t), xi(t) from all eNBi in {1, ..., m}

      2. Find x* = [x*1, ..., x*m]T

      3. For all i in {1, ..., m}

             if xi(t) > x*i 

             then 

                  for all j in {i+1, ..., m} 

                 if xj(t) < x*j 

                 then xi(t) := xi(t) - min[xi(t)-x*i, x*j- xj(t)],   

                            xj(t) :=  xj(t) + min[xi(t)-x*i, x*j- xj(t)],

       index := j,

                           number := min[xi(t)-x*i, x*j- xj(t)],

                                 send index, number to eNBi

                 else 

                         index := i,

                          number := xi(t),

                          send index, number to eNBi

   At all eNBi in {1, ..., m}

      1. Receive index, number from EPC

      2. Send index to number SUs 

   At SUs 

     1. Receive index from eNB

      2. Connect to eNBindex 

Fig. 67. DSA Algorithm for LTE-based CRN 
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4 Performance Analysis 

4.1 Simulation Model 

In this subsection we describe the simulation model of the network 

shown on Figure 6. The model has been implemented based on the 

standard LTE-A platform using the OPNET simulation and 

development package [112]. The wireless networking part of the model 

consists of m = 7 SPs (eNBs) numbered eNB1, …, eNB7. The core 

networking part comprises the EPC and the server. The SPs operate on 

fixed non-overlapping licensed spectrum bands and the number of 

available control remain constant (the values of b1, …, b7 and C1
CCH

, 

…, C7
CCH

 are given on Table 17). In the network ∆t = 1000×Ts = 1s. 

The radio model of the network has been developed according to the 

ITU-T Recommendation M.1225. Other simulation parameters are set 

in coherence with the requirements of the LTE specifications [131, 157, 

158] (the simulation parameters of the network model are listed in 

Table 18). 

Table 17. The Bandwidth and the Number of Control Channels in the Model 

eNB ID Bandwidth Center Frequency Number of Control Channels 

eNB1 b1 = 5 MHz 2000 MHz C1
CCH

 = 20 

eNB2 b2 = 5 MHz 2005 MHz C2
CCH

 = 20 

eNB3 b3 = 5 MHz 2010 MHz C3
CCH

 = 20 

eNB4 b4 = 5 MHz 2015 MHz C4
CCH

 = 20 

eNB5 b5 = 10 MHz 2022.5 MHz C5
CCH

 = 41 

eNB6 b6 = 10 MHz 2032.5 MHz C6
CCH

 = 41 

eNB7 b7 = 20 MHz 2047.5 MHz C7
CCH

 = 84 
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Table 18. Simulation Parameters of the Model 

Parameter Value 

Radio Network 

Model: 

Pass loss 49log30log40
1010

 fRL , 

 R – distance (km),  

f – carrier frequency (Hz) 

Shadow fading Log-normal shadow fading with a 

st. dev. of 10/12 dB for 

outdoor/indoor users 

Penetration loss The average building penetration 

loss is 12 dB with a st. dev. of 8 dB 

Multipath fading SCM, Suburban macro 

UE velocity 0 km/s 

Tx/Rx antenna gain 10 dBi (pedestrian), 2 dBi (indoor) 

Rx antenna gain 10 dBi (pedestrian), 2 dBi (indoor) 

Rx noise figure 5 dB 

Thermal noise density –174 dBm/Hz 

Cable/connector/combiner 

losses 

2 dB 

PHY profile: Operation mode FDD 

Cyclic Prefix Type Normal (7 Symbols per Slot) 

EPC Bearer Definitions 348kbit/s (Non-GBR) 

Subcarrier spacing 15kHz 

Admission 

Control 

Parameters: 

PDCCH symbols per 

subframe 

3 

UL Loading Factor 1 
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DL Loading Factor 1 

Inactive Bearer Timeout 20 sec 

BSR 

Parameters: 

Periodic Timer 5 subframes 

Retransmission Timer 2560 subframes 

L1/L2 Control 

Parameters: 

Reserved Size 2 RBs 

Cyclic Shifts 6 

Starting RBP for Format 1 

messages 

0 

Allocation Periodicity 5 subframes 

RA Parameters: Number of Preambles 64 

Preamble Format Format 0 (1-subframe long) 

Number of RA Resources 

per Frame 

4 

Preamble Retransmission 

Limit 

5 subframes 

RA Response Timer 5 subframes 

Contention Resolution 

Timer 

40 subframes 

HARQ 

Parameters: 

Max Number of 

Retransmissions 

3 (UL & DL) 

HARQ Retransmission 

Timer 

8 subframes (UL & DL) 

Max Number of HARQ 

processes 

8 per UE (UL & DL) 

 

To facilitate fair and comprehensive simulative analysis, we compare 

the performance of the proposed algorithm with the performance of two 
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most relevant spectrum access techniques applicable to the considered 

system model. These techniques are cognitive radio resource 

management scheme for improving the LTE efficiency described in 

[170] and dynamic bandwidth access scheme through pricing modeling 

described in [171].  

In the first scheme the spectrum is assumed to be discrete: the total 

available bandwidth is divided into a number of sub-carriers. The sub-

carriers are assigned to the users to maximize the aggregated 

logarithmic user utility given as a function of the user bit rate. Within 

the time slot one sub-carrier can be assigned to at most one user [170].  

In the second scheme a number of PUs provide the wireless access to 

a number of SUs based on their utility function. The user utility is 

represented by the function depending on three parameters: 1) the 

amount of bandwidth which PU is willing to share with SU, 2) the 

signal to interference ratio of the wireless channel between the SU and 

PU and 3) the offered price for the bandwidth unit [171].  

Here and after we use the following notation to differentiate 

performance of different algorithms in simulations: RBA (or rate based 

allocation) for the scheme described in [170]; PBA (or price based 

allocation) for the scheme described in [171]; DBA (or delay based 

allocation) for the scheme proposed in this work.  

All algorithms are simulated with identical LTE parameters and 

under identical network deployment scenarios (such as channel quality, 

traffic load, use behaviour, etc.). 

The user traffic in simulations comprises three most frequently used 

network applications: VoIP, video and HTTP. The following models 

are used to simulate voice, video and web users:  

 The VoIP services model is ON-OFF model with exponentially 

distributed ON-OFF periods. The mean duration of ON and OFF 

periods are 0.65s and 0.352s, respectively. The VoIP traffic is 

generated by using the G.723.1 (12.2 Kbps) codec with a voice 

payload size 40 bytes and a voice payload interval 30 ms [167].  

 Video services are simulated using a high resolution video model 

with a constant frame size equal 6250 bytes and exponentially 

distributed frame inter-arrival intervals (with mean equal 0.5s) [167].  
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 Web users in simulations are HTTP1.1 users generating pages or 

images with exponential page inter-arrival intervals (mean equal 

60sec). It is assumed that one page consists of one object, whereas 

one image consists of five objects. The object size is constant and 

equal 1000 bytes [167]. 

4.2 Simulations Results 

Results below demonstrate the performance of different algorithms 

collected under different network deployment scenarios. The graphs on 

the Figures 68 – 72 show mean packet delay in the network with mean 

number of SUs in the network X = 100 ÷ 1000 UEs. For DBA we limit 

the maximal allowed delay to be D1
P
 =... = D7

P
 = 100 ms for all eNBs. 

Figures 68, 69 show the performance for mean number of PUs n = 

1000 UEs; Figures 70, 71 show the performance for mean number of 

PUs n = 2000 UEs.  

Results demonstrate that PBA and DBA show better performance for 

PUs because of the prioritized access of PUs offered in the network, 

whereas the delay for PUs and SUs in RBA are almost the same (the 

spectrum resource in RBA are assigned based on user bit rate without 

prioritizing). Results also show that the performance of DBA is much 

better than performance of RBA and PBA both for PUs and SUs which 

is mainly explained by the fact that the main component of delay in 

LTE network is related to scheduling, and the algorithm restricts the 

number of SUs subject to delay constrains of PUs.  

Performance of DBA can be better demonstrated using the graphs on 

Figure 72 showing the mean number of SUs served by CRN with 

maximal allowed delay D1
P
 =... = D7

P
 ranging from 0 to 100 ms and X 

= 3000 SUs. From this graphs it clearly follows how the number of SUs 

served by CRN is related to the delay constraints in DBA. 
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Fig. 68. Mean packet delay for PUs with n = 1000 UEs 

 

Fig. 69. Mean packet delay for SUs with n = 1000 UEs 



 

 

 

  

 

 

188 

 

Fig. 70. Mean packet delay for PUs with n = 2000 UEs 

 

Fig. 71. Mean packet delay for SUs with n = 2000 UEs 
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Fig. 72. Mean number of served SUs with X = 3000 UEs 
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CONCLUSIONS 

This thesis contains a collection of various resource management 

techniques to provide increased spectrum utilization and enhanced end-

to-end QoS for users of future wireless networks. Although we consider 

the application of these techniques to specific wireless network 

interfaces (Wi-Fi and LTE), most of them can be deployed in any 

OFDMA-based network. In this thesis we consider three different 

network deployment scenarios, and offer some general network 

architecture and resource allocation policy which can be implemented 

using any of the proposed algorithms to improve the overall capacity 

and service performance of the network.  

The main advantage of the algorithms proposed in this thesis is 

possibility of pratical implementation of these algorithms upon existing 

wireless networking platforms. For instance, in most cases we use the 

arrival rate and the size of the queues at the nodes of the network as 

observable system parameters. In real Wi-Fi and LTE networks, these 

parameters are readily available at the MAC queues of user terminals 

and base stations in both uplink and downlink directions. After 

collecting the necessary parametric information, the nodes send the 

parametric values to a central processor (which can be implemented at 

a base station, EPC or a server) using IP links of high date rate. This 

way of information exchange between the network nodes and a central 

processor eliminates the need for additional control signaling over the 

wireless medium, and enables fast and practically error-free 

transmission of the control information used for resource allocation.  

After receiving the parametric information, a central processor 

calculates the optimal resource allocation, and sends the results to the 

correponding nodes (via IP links). If (for some reason) the current 

observation(s) is not received, the last available data is used by a 

central processor to obtain an optimal solution. Thus, the proposed 

resource allocation approach is robust, since the dynamics of resource 

allocation (the interval between two consecutive resource allocations) is 

much faster than the dynamics of the change in parameteric values. 

Finally, most of the proposed methods (for traffic prediction and 

resouse allocation) have low or moderate computational complexity, 
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and therefore can be applied to large networks consisting of many 

nodes.  
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